Skip to main content
Log in

Machine health management in smart factory: A review

  • Invited Review Paper
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we present a review of machine health managements for the smart factory. As the Industry 4.0 leads current factory automation and intelligent machines, the machine health management for diagnostic and prognostic purposes are essential, and their importance is getting more significant for the realization of the smart factory in the Industry 4.0. After brief introductions to important concepts and definitions composing smart factory and Industry 4.0, the developments in maintenance strategies towards Prognostics and health management (PHM) of machines are summarized. The review of machine health managements is followed, classifying the references by the monitoring components, types of measurements, as well as PHM tools and algorithms. 94 existing articles are reviewed and summarized in this regard. The implementations of machine health managements within the smart factory are discussed in terms of data connectivity, communications, Cyber-physical system (CPS) and virtual factory, relating them to Internet of things (IoT), cloud computing, and big data management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Cubillo, S. Perinpanayagam and M. Esperon-Miguez, A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery, Advances in Mechanical Engineering, 8 (8) (2016).

    Google Scholar 

  2. K. Goh, B. Tjahjono, T. Baines and S. Subramaniam, A review of research in manufacturing prognostics, 2006 IEEE International Conference on Industrial Informatics (2006) 417–422.

    Chapter  Google Scholar 

  3. A. K. Jardine, D. Lin and D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, 20 (7) (2006) 1483–1510.

    Article  Google Scholar 

  4. M. S. Kan, A. C. Tan and J. Mathew, A review on prognostic techniques for non-stationary and non-linear rotating systems, Mechanical Systems and Signal Processing, 62 (2015) 1–20.

    Article  Google Scholar 

  5. Y. Lei, J. Lin, Z. He and M. J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, 35 (1) (2013) 108–126.

    Article  Google Scholar 

  6. C. Stolz and M. Neumair, Structural health monitoring, inservice experience, benefit and way ahead, Structural Health Monitoring, 9 (3) (2010) 209–217.

    Article  Google Scholar 

  7. Y. Wang, J. Xiang, R. Markert and M. Liang, Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications, Mechanical Systems and Signal Processing, 66 (2016) 679–698.

    Google Scholar 

  8. R. Ahmad and S. Kamaruddin, An overview of time-based and condition-based maintenance in industrial application, Computers & Industrial Engineering, 63 (1) (2012) 135–149.

    Article  Google Scholar 

  9. J. Lee, B. Bagheri and H.-A. Kao, A cyber-physical systems architecture for Industry 4.0-based manufacturing systems, Manufacturing Letters, 3 (2015) 18–23.

    Article  Google Scholar 

  10. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao and D. Siegel, Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications, Mechanical Systems and Signal Processing, 42 (1) (2014) 314–334.

    Article  Google Scholar 

  11. G. Niu, B.-S. Yang and M. Pecht, Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance, Reliability Engineering & System Safety, 95 (7) (2010) 786–796.

    Article  Google Scholar 

  12. J. Lee, M. Ghaffari and S. Elmeligy, Self-maintenance and engineering immune systems: Towards smarter machines and manufacturing systems, Annual Reviews in Control, 35 (1) (2011) 111–122.

    Article  Google Scholar 

  13. A. Widodo and B.-S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and Signal Processing, 21 (6) (2007) 2560–2574.

    Article  Google Scholar 

  14. A. M. Alexandru, A. De Mauro, M. Fiasché, F. G. Sisca, M. Taisch, L. Fasanotti and P. Grasseni, A smart web-based maintenance system for a smart manufacturing environment, 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI) (2015) 579–584.

    Chapter  Google Scholar 

  15. T. Han and B.-S. Yang, Development of an e-maintenance system integrating advanced techniques, Computers in Industry, 57 (6) (2006) 569–580.

    Article  Google Scholar 

  16. M. Papazoglou, W.-J. van den Heuvel and J. Mascolo, Reference architecture and knowledge-based structures for smart manufacturing networks, IEEE Software (2015).

    Google Scholar 

  17. S. Choi, B. H. Kim and S. D. Noh, A diagnosis and evaluation method for strategic planning and systematic design of a virtual factory in smart manufacturing systems, International Journal of Precision Engineering and Manufacturing, 16 (6) (2015) 1107–1115.

    Article  Google Scholar 

  18. Y. Zhang, T. Qu, O. K. Ho and G. Q. Huang, Agent-based smart gateway for RFID-enabled real-time wireless manufacturing, International Journal of Production Research, 49 (5) (2011) 1337–1352.

    Article  Google Scholar 

  19. Y. Zhang, G. Q. Huang, T. Qu, O. Ho and S. Sun, Agentbased smart objects management system for real-time ubiquitous manufacturing, Robotics and Computer-Integrated Manufacturing, 27 (3) (2011) 538–549.

    Article  Google Scholar 

  20. A. M. Ghalayini, J. S. Noble and T. J. Crowe, An integrated dynamic performance measurement system for improving manufacturing competitiveness, International Journal of Production Economics, 48 (3) (1997) 207–225.

    Article  Google Scholar 

  21. H. Ramamurthy, B. Prabhu, R. Gadh and A. M. Madni, Wireless industrial monitoring and control using a smart sensor platform, IEEE Sensors Journal, 7 (5) (2007) 611–618.

    Article  Google Scholar 

  22. S. Wang, J. Wan, D. Zhang, D. Li and C. Zhang, Towards smart factory for Industry 4.0: A self-organized multi-agent system with big data based feedback and coordination, Computer Networks, 101 (2016) 158–168.

    Article  Google Scholar 

  23. G. Anderson, The economic impact of technology infrastructure for smart manufacturing, NIST, Gaithersburg, NIST Economic Analysis Briefs, 4 (2016).

  24. D. Zuehlke, Smart factory—towards a factory-of-things, Annual Reviews in Control, 34 (1) (2010) 129–138.

    Article  Google Scholar 

  25. Y. Lu and J. Cecil, An Internet of things (IoT)-based collaborative framework for advanced manufacturing, International Journal of Advanced Manufacturing Technology, 84 (2016).

  26. H.-S. Park and N.-H. Tran, Autonomy for smart manufacturing, Journal of the Korean Society for Precision Engineering, 31 (4) (2014) 287–295.

    Article  Google Scholar 

  27. S. Yin and O. Kaynak, Big data for modern industry: challenges and trends [Point of view], Proceedings of the IEEE, 103 (2) (2015) 143–146.

    Article  Google Scholar 

  28. G. Hwang, J. Lee, J. Park and T.-W. Chang, Developing performance measurement system for Internet of Things and smart factory environment, International Journal of Production Research, 55 (9) (2017) 2590–2602.

    Article  Google Scholar 

  29. X. Xu, From cloud computing to cloud manufacturing, Robotics and Computer-integrated Manufacturing, 28 (1) (2012) 75–86.

    Article  Google Scholar 

  30. J. Delaram and O. F. Valilai, Development of a novel solution to enable integration and interoperability for cloud manufacturing, Procedia CIRP, 52 (2016) 6–11.

    Article  Google Scholar 

  31. D. Wu, D. Schaefer and D. W. Rosen, Cloud-based design and manufacturing systems: A social network analysis, International Conference on Engineering Design (ICED 2013) (2013).

    Google Scholar 

  32. S. Wang, J. Wan, D. Li and C. Zhang, Implementing smart factory of industrie 4.0: an outlook, International Journal of Distributed Sensor Networks (2016).

    Google Scholar 

  33. L. Monostori, Cyber-physical production systems: Roots, expectations and R&D challenges, Procedia CIRP, 17 (2014) 9–13.

    Article  Google Scholar 

  34. N. Shariatzadeh, T. Lundholm, L. Lindberg and G. Sivard, Integration of digital factory with smart factory based on Internet of things, Procedia CIRP, 50 (2016) 512–517.

    Article  Google Scholar 

  35. B. K. Paul, R. Panat, C. Mastrangelo, D. Kim and D. Johnson, Manufacturing of smart goods: Current state, future potential, and research recommendations, Journal of Micro and Nano-Manufacturing, 4 (4) (2016) 044001.

    Google Scholar 

  36. M. Adnan and H. Zen, ICT Convergence in internet of things-the birth of smart factories (A technical note), International Journal of Computer Science and Information Security, 14 (4) (2016) 93.

    Google Scholar 

  37. J. Lee, B. Bagheri and H.-A. Kao, Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics, International Proceeding of Int Conference on Industrial Informatics (INDIN) (2014) 1–6.

    Google Scholar 

  38. M. Wieland, F. Leymann, M. Schäfer, D. Lucke, C. Constantinescu and E. Westkämper, Using context-aware workflows for failure management in a smart factory, Proceedings of Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies UBICOMM (2010) 379–384.

    Google Scholar 

  39. K. Le Son, M. Fouladirad, A. Barros, E. Levrat and B. Iung, Remaining useful life estimation based on stochastic deterioration models: A comparative study, Reliability Engineering & System Safety, 112 (2013) 165–175.

    Article  Google Scholar 

  40. X.-S. Si, W. Wang, C.-H. Hu and D.-H. Zhou, Remaining useful life estimation–A review on the statistical data driven approaches, European Journal of Operational Research, 213 (1) (2011) 1–14.

    Article  MathSciNet  Google Scholar 

  41. N. M. Vichare and M. G. Pecht, Prognostics and health management of electronics, IEEE Transactions on Components and Packaging Technologies, 29 (1) (2006) 222–229.

    Article  Google Scholar 

  42. J. Sikorska, M. Hodkiewicz and L. Ma, Prognostic modelling options for remaining useful life estimation by industry, Mechanical Systems and Signal Processing, 25 (5) (2011) 1803–1836.

    Article  Google Scholar 

  43. S. Cheng, M. H. Azarian and M. G. Pecht, Sensor systems for prognostics and health management, Sensors, 10 (6) (2010) 5774–5797.

    Article  Google Scholar 

  44. H. Ramamurthy, B. Prabhu, R. Gadh and A. M. Madni, Smart sensor platform for industrial monitoring and control, Sensors, 2005 IEEE (2005) 4.

    Google Scholar 

  45. C. Zhu, Y. Huo, V. C. Leung and L. T. Yang, Sensor-cloud and power line communication: Recent developments and integration, Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, 2016 IEEE 14th Intl C (2016) 302–308.

    Google Scholar 

  46. S. C. Lee, T. G. Jeon, H.-S. Hwang and C.-S. Kim, Design and implementation of wireless sensor based-monitoring system for smart factory, International Conference on Computational Science and its Applications (2007) 584–592.

    Google Scholar 

  47. A. Muller, A. C. Marquez and B. Iung, On the concept of emaintenance: Review and current research, Reliability Engineering & System Safety, 93 (8) (2008) 1165–1187.

    Article  Google Scholar 

  48. W. Zhou, T. G. Habetler and R. G. Harley, Bearing condition monitoring methods for electric machines: A general review, Diagnostics for Electric Machines, Power Electronics and Drives, 2007. SDEMPED 2007. IEEE International Symposium on (2007) 3–6.

    Google Scholar 

  49. A. Jardine, D. Banjevic, N. Montgomery and A. Pak, Repairable system reliability: Recent developments in CBM optimization, International Journal of Performability Engineering, 4 (3) (2008) 205–214.

    Google Scholar 

  50. V. Ajukumar and O. Gandhi, Evaluation of green maintenance initiatives in design and development of mechanical systems using an integrated approach, Journal of Cleaner Production, 51 (2013) 34–46.

    Article  Google Scholar 

  51. M. Kedadouche, M. Thomas and A. Tahan, A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis, Mechanical Systems and Signal Processing, 81 (2016) 88–107.

    Article  Google Scholar 

  52. Y. Imaouchen, M. Kedadouche, R. Alkama and M. Thomas, A frequency-weighted energy operator and complementary ensemble empirical mode decomposition for bearing fault detection, Mechanical Systems and Signal Processing, 82 (2017) 103–116.

    Article  Google Scholar 

  53. J. K. Sinha and K. Elbhbah, A future possibility of vibration based condition monitoring of rotating machines, Mechanical Systems and Signal Processing, 34 (1) (2013) 231–240.

    Article  Google Scholar 

  54. S. Gowid, R. Dixon and S. Ghani, A novel robust automated FFT-based segmentation and features selection algorithm for acoustic emission condition based monitoring systems, Applied Acoustics, 88 (2015) 66–74.

    Article  Google Scholar 

  55. J. C. Chan and W. T. Peter, A novel, fast, reliable data transmission algorithm for wireless machine health monitoring, IEEE Transactions on Reliability, 58 (2) (2009) 295–304.

    Google Scholar 

  56. R. Yan and R. X. Gao, Approximate entropy as a diagnostic tool for machine health monitoring, Mechanical Systems and Signal Processing, 21 (2) (2007) 824–839.

    Article  MathSciNet  Google Scholar 

  57. B. Samanta and K. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 17 (2) (2003) 317–328.

    Article  Google Scholar 

  58. S. Janjarasjitt, H. Ocak and K. Loparo, Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal, Journal of Sound and Vibration, 317 (1) (2008) 112–126.

    Article  Google Scholar 

  59. A. Soualhi, K. Medjaher and N. Zerhouni, Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression, IEEE Transactions on Instrumentation and Measurement, 64 (1) (2015) 52–62.

    Article  Google Scholar 

  60. J. Patel and S. Upadhyay, Comparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearings, Procedia Engineering, 144 (2016) 390–397.

    Article  Google Scholar 

  61. Z. Tian and H. Liao, Condition based maintenance optimization for multi-component systems using proportional hazards model, Reliability Engineering & System Safety, 96 (5) (2011) 581–589.

    Article  Google Scholar 

  62. B. Dolenc, P. Boškoski and Đ. Juričić, Distributed bearing fault diagnosis based on vibration analysis, Mechanical Systems and Signal Processing, 66 (2016) 521–532.

    Article  Google Scholar 

  63. M. Elforjani, Estimation of remaining useful life of slow speed bearings using acoustic emission signals, Journal of Nondestructive Evaluation, 35 (4) (2016) 62.

    Article  Google Scholar 

  64. Y. Wang, C. Lu, H. Liu and Y. Wang, Fault diagnosis for centrifugal pumps based on complementary ensemble empirical mode decomposition, sample entropy and random forest, 2016 12th World Congress on Intelligent Control and Automation (WCICA) (2016) 1317–1320.

    Chapter  Google Scholar 

  65. B. Zhou and Y. Cheng, Fault diagnosis for rolling bearing under variable conditions based on image recognition, Shock and Vibration, 2016 (2016).

    Google Scholar 

  66. R. Yan and R. X. Gao, Hilbert–Huang transform-based vibration signal analysis for machine health monitoring, IEEE Transactions on Instrumentation and Measurement, 55 (6) (2006) 2320–2329.

    Article  Google Scholar 

  67. I. E. Alguindigue, A. Loskiewicz-Buczak and R. E. Uhrig, Monitoring and diagnosis of rolling element bearings using artificial neural networks, IEEE Transactions on Industrial Electronics, 40 (2) (1993) 209–217.

    Article  Google Scholar 

  68. M. Elforjani and D. Mba, Natural mechanical degradation measurements in slow speed bearings, Engineering Failure Analysis, 16 (1) (2009) 521–532.

    Article  Google Scholar 

  69. B. Li, M.-Y. Chow, Y. Tipsuwan and J. C. Hung, Neuralnetwork-based motor rolling bearing fault diagnosis, IEEE Transactions on Industrial Electronics, 47 (5) (2000) 1060–1069.

    Article  Google Scholar 

  70. B. Eftekharnejad, M. Carrasco, B. Charnley and D. Mba, The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing, Mechanical Systems and Signal Processing, 25 (1) (2011) 266–284.

    Article  Google Scholar 

  71. D. Mba, The use of acoustic emission for estimation of bearing defect size, Journal of Failure Analysis and Prevention, 8 (2) (2008) 188–192.

    Article  Google Scholar 

  72. S. Chen, M. Craig, R. Callan, H. Powrie and R. Wood, Use of artificial intelligence methods for advanced bearing health diagnostics and prognostics, Aerospace Conference, 2008 IEEE (2008) 1–9.

    Google Scholar 

  73. H.-C. Chang, S.-C. Lin, C.-C. Kuo, C.-Y. Lin and C.-F. Hsieh, Using neural network based on the shaft orbit feature for online rotating machinery fault diagnosis, 2016 International Conference on System Science and Engineering (ICSSE) (2016) 1–4.

    Google Scholar 

  74. C. K. Tan, P. Irving and D. Mba, A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears, Mechanical Systems and Signal Processing, 21 (1) (2007) 208–233.

    Google Scholar 

  75. W. Wang, A. Vinco, N. Pavlov, N. Wang, M. Hayes and C. O'Mathuna, A rotating machine acoustic emission monitoring system powered by multi-source energy harvester, Proceedings of the 1st International Workshop on Energy Neutral Sensing Systems (2013) 5.

    Google Scholar 

  76. Y. Wang and Y. Cheng, An approach to fault diagnosis for gearbox based on image processing, Shock and Vibration, 2016 (2016).

  77. T. Loutas, G. Sotiriades, I. Kalaitzoglou and V. Kostopoulos, Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements, Applied Acoustics, 70 (9) (2009) 1148–1159.

    Article  Google Scholar 

  78. F. Jia, Y. Lei, J. Lin, X. Zhou and N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mechanical Systems and Signal Processing, 72 (2016) 303–315.

    Article  Google Scholar 

  79. A. May, D. McMillan and S. Thöns, Economic analysis of condition monitoring systems for offshore wind turbine subsystems, IET Renewable Power Generation, 9 (8) (2015) 900–907.

    Article  Google Scholar 

  80. H. Liu, J. Zhang, Y. Cheng and C. Lu, Fault diagnosis of gearbox using empirical mode decomposition and multifractal detrended cross-correlation analysis, Journal of Sound and Vibration, 385 (2016) 350–371.

    Article  Google Scholar 

  81. L. Zhao, W. Yu and R. Yan, Gearbox fault diagnosis using complementary ensemble empirical mode decomposition and permutation entropy, Shock and Vibration, 2016 (2016).

  82. R. Li and D. He, Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification, IEEE Transactions on Instrumentation and Measurement, 61 (4) (2012) 990–1001.

    Article  Google Scholar 

  83. T. Loutas, D. Roulias, E. Pauly and V. Kostopoulos, The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery, Mechanical Systems and Signal Processing, 25 (4) (2011) 1339–1352.

    Google Scholar 

  84. Y. Peng and M. Dong, A prognosis method using agedependent hidden semi-Markov model for equipment health prediction, Mechanical Systems and Signal Processing, 25 (1) (2011) 237–252.

    Article  Google Scholar 

  85. S. Yang, A condition-based failure-prediction and processingscheme for preventive maintenance, IEEE Transactions on Reliability, 52 (3) (2003) 373–383.

    Article  Google Scholar 

  86. R. I. Rodriguez and Y. Jia, A wireless inductive-capacitive (LC) sensor for rotating component temperature monitoring, International Journal on Smart Sensing and Intelligent Systems, 4 (2) (2011) 325–337.

    Article  Google Scholar 

  87. J. Bao, Z. Zhu, H. Tang, T. Lu and Q. Zhang, Apply lowlevel image feature representation and classification method to identifying shaft orbit of hydropower unit, 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (2014) 165–168.

    Google Scholar 

  88. M. Hayashi, H. Yoshioka and H. Shinno, An adaptive control of ultraprecision machining with an in-process micro-sensor, Journal of Advanced Mechanical Design, Systems and Manufacturing, 2 (3) (2008) 322–331.

    Article  Google Scholar 

  89. S. Hu, F. Liu, Y. He and T. Hu, An on-line approach for energy efficiency monitoring of machine tools, Journal of Cleaner Production, 27 (2012) 133–140.

    Article  Google Scholar 

  90. K. Javed, R. Gouriveau, N. Zerhouni and P. Nectoux, Enabling health monitoring approach based on vibration data for accurate prognostics, IEEE Transactions on Industrial Electronics, 62 (1) (2015) 647–656.

    Article  Google Scholar 

  91. P. Arrazola, I. Arriola, M. Davies, A. Cooke and B. Dutterer, The effect of machinability on thermal fields in orthogonal cutting of AISI 4140 steel, CIRP Annals-Manufacturing Technology, 57 (1) (2008) 65–68.

    Article  Google Scholar 

  92. H. M. Tun, M. Kyaw and Z. M. Naing, Development of process monitoring system in drilling process using fuzzy rules, International Journal of System Assurance Engineering and Management, 2 (1) (2011) 78–83.

    Article  Google Scholar 

  93. H. Kim, J. Ahn, S. Kim and S. Takata, Real-time drill wear estimation based on spindle motor power, Journal of Materials Processing Technology, 124 (3) (2002) 267–273.

    Article  Google Scholar 

  94. R. E. Haber, J. E. Jiménez, C. R. Peres and J. R. Alique, An investigation of tool-wear monitoring in a high-speed machining process, Sensors and Actuators A: Physical, 116 (3) (2004) 539–545.

    Article  Google Scholar 

  95. S.-G. Kim, S.-H. Jang, H.-Y. Hwang, Y.-H. Choi and J.-S. Ha, Analysis of dynamic characteristics and evaluation of dynamic stiffness of a 5-axis multi-tasking machine tool by using FEM and exciter test, International Conference on Smart Manufacturing Application, ICSMA 2008 (2008) 565–569.

    Article  Google Scholar 

  96. I. Inasaki, Application of acoustic emission sensor for monitoring machining processes, Ultrasonics, 36 (1–5) (1998) 273–281.

    Article  Google Scholar 

  97. D. Kerr, J. Pengilley and R. Garwood, Assessment and visualisation of machine tool wear using computer vision, The International Journal of Advanced Manufacturing Technology, 28 (7) (2006) 781–791.

    Article  Google Scholar 

  98. B. Kaya, C. Oysu and H. M. Ertunc, Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks, Advances in Engineering Software, 42 (3) (2011) 76–84.

    Article  Google Scholar 

  99. M. Lanz, M. Mani, S. Leong, K. Lyons, A. Ranta, K. Ikkala and N. Bengtsson, Impact of energy measurements in machining operations, ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2010) 867–873.

    Google Scholar 

  100. V. A. Balogun and P. T. Mativenga, Modelling of direct energy requirements in mechanical machining processes, Journal of Cleaner Production, 41 (2013) 179–186.

    Article  Google Scholar 

  101. H. Zeng, T. B. Thoe, X. Li and J. Zhou, Multi-modal sensing for machine health monitoring in high speed machining, 2006 IEEE International Conference on Industrial Informatics (2006) 1217–1222.

    Chapter  Google Scholar 

  102. A. Iasonna and M. Magini, Power measurements during mechanical milling. An experimental way to investigate the energy transfer phenomena, Acta Materialia, 44 (3) (1996) 1109–1117.

    Article  Google Scholar 

  103. B. Denkena, K. M. Litwinski and H. Boujnah, Process monitoring with a force sensitive axis-slide for machine tools, Procedia Technology, 15 (2014) 416–423.

    Article  Google Scholar 

  104. N. Diaz, M. Helu, A. Jarvis, S. Tönissen, D. Dornfeld and R. Schlosser, Strategies for minimum energy operation for precision machining, Laboratory for Manufacturing and Sustainability (2009).

    Google Scholar 

  105. L. Ma, S. N. Melkote, J. B. Morehouse, J. B. Castle, J. W. Fonda and M. A. Johnson, Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling, Journal of Dynamic Systems, Measurement, and Control, 134 (5) (2012) 051014.

    Article  Google Scholar 

  106. S. Kara and W. Li, Unit process energy consumption models for material removal processes, CIRP Annals-Manufacturing Technology, 60 (1) (2011) 37–40.

    Article  Google Scholar 

  107. Y. Chethan, H. Ravindra and S. B. Kumar, Machine vision for tool status monitoring in turning Inconel 718 using blob analysis, Materials Today: Proceedings, 2 (4–5) (2015) 1841–1848.

    Article  Google Scholar 

  108. B. Chen, X. Chen, B. Li, Z. He, H. Cao and G. Cai, Reliability estimation for cutting tools based on logistic regression model using vibration signals, Mechanical Systems and Signal Processing, 25 (7) (2011) 2526–2537.

    Article  Google Scholar 

  109. R. Jain, J. Rathore and V. Gorana, Design, development and testing of a three component lathe tool dynamometer using resistance strain gauges, CAD/CAM, robotics and factories of the future, Springer (2016) 13–21.

    Chapter  Google Scholar 

  110. R. Stoney, G. E. O’Donnell and D. Geraghty, Dynamic wireless passive strain measurement in CNC turning using surface acoustic wave sensors, The International Journal of Advanced Manufacturing Technology, 69 (5–8) (2013) 1421–1430.

    Article  Google Scholar 

  111. A. H. Suhail, N. Ismail, S. V. Wong and N. A. Jalil, Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process, American Journal of Engineering and Applied Sciences, 3 (1) (2010) 102–108.

    Article  Google Scholar 

  112. J. Zhao, H. Li, H. Choi, W. Cai, J. A. Abell and X. Li, Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs, Journal of Manufacturing Processes, 15 (1) (2013) 136–140.

    Article  Google Scholar 

  113. K. Patra, A. Jha, T. Szalay, J. Ranjan and L. Monostori, Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals, Precision Engineering, 48 (2017) 279–291.

    Article  Google Scholar 

  114. J. M. Griffin, F. Diaz, E. Geerling, M. Clasing, V. Ponce, C. Taylor, S. Turner, E. A. Michael, F. P. Mena and L. Bronfman, Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals, Mechanical Systems and Signal Processing, 85 (2017) 1020–1034.

    Article  Google Scholar 

  115. M.-H. Lee, M.-C. Lu and J.-C. Tsai, Development of sound based tool wear monitoring system in micro-milling, ASME 2010 International Manufacturing Science and Engineering Conference (2010) 427–434.

    Chapter  Google Scholar 

  116. V. Schulze, P. Weber and C. Ruhs, Increase of process reliability in the micro-machining processes EDM-milling and laser ablation using on-machine sensors, Journal of Materials Processing Technology, 212 (3) (2012) 625–632.

    Article  Google Scholar 

  117. J. Wang, J. Qian, E. Ferraris and D. Reynaerts, In-situ process monitoring and adaptive control for precision micro-EDM cavity milling, Precision Engineering, 47 (2017) 261–275.

    Article  Google Scholar 

  118. M. Szydłowski, B. Powałka, M. Matuszak and P. Kochmański, Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance, Precision Engineering, 44 (2016) 236–244.

    Article  Google Scholar 

  119. X. Wen and Y. Gong, Modeling and prediction research on wear of electroplated diamond micro-grinding tool in soda lime glass grinding, The International Journal of Advanced Manufacturing Technology (2017) 1–13.

    Google Scholar 

  120. F. Castaño, R. M. del Toro, R. E. Haber and G. Beruvides, Monitoring tool usage on the basis of sensory information in micro-drilling operations, 2016 IEEE International Conference on Industrial Technology (ICIT) (2016) 667–672.

    Chapter  Google Scholar 

  121. G. Tristo, G. Bissacco, A. Lebar and J. Valentinčič, Real time power consumption monitoring for energy efficiency analysis in micro EDM milling, The International Journal of Advanced Manufacturing Technology, 78 (9–12) (2015) 1511–1521.

    Article  Google Scholar 

  122. S. Mandal, V. K. Sharma, A. Pal and Nagahanumaiah, Tool strain–based wear estimation in micro turning using Bayesian networks, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230 (10) (2016) 1952–1960.

    Article  Google Scholar 

  123. Y.-S. Hong, H.-S. Yoon, J.-S. Moon, Y.-M. Cho and S.-H. Ahn, Tool-wear monitoring during micro-end milling using wavelet packet transform and Fisher’s linear discriminant, International Journal of Precision Engineering and Manufacturing, 17 (7) (2016) 845–855.

    Article  Google Scholar 

  124. K. Zhu and X. Yu, The monitoring of micro milling tool wear conditions by wear area estimation, Mechanical Systems and Signal Processing, 93 (2017) 80–91.

    Article  Google Scholar 

  125. H. Malik and S. Mishra, Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using TurbSim, FAST and Simulink, IET Renewable Power Generation (2016).

    Google Scholar 

  126. B.-S. Yang, S. K. Jeong, Y.-M. Oh and A. C. C. Tan, Case-based reasoning system with Petri nets for induction motor fault diagnosis, Expert Systems with Applications, 27 (2) (2004) 301–311.

    Article  Google Scholar 

  127. G. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, Electric Power Systems Research, 65 (3) (2003) 197–221.

    Article  Google Scholar 

  128. H. Su and K. T. Chong, Induction machine condition monitoring using neural network modeling, IEEE Transactions on Industrial Electronics, 54 (1) (2007) 241–249.

    Article  Google Scholar 

  129. M. Mannan, S. Broms and B. Lindström, Monitoring and adaptive control of cutting process by means of motor power and current measurements, CIRP Annals-Manufacturing Technology, 38 (1) (1989) 347–350.

    Article  Google Scholar 

  130. Z. Zhang, Y. Wang and K. Wang, Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network, Journal of Intelligent Manufacturing, 24 (6) (2013) 1213–1227.

    Article  Google Scholar 

  131. B.-S. Yang, M.-S. Oh and A. C. C. Tan, Machine condition prognosis based on regression trees and one-stepahead prediction, Mechanical Systems and Signal Processing, 22 (5) (2008) 1179–1193.

    Article  Google Scholar 

  132. B.-S. Yang and A. C. C. Tan, Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems, Expert Systems with Applications, 36 (5) (2009) 9378–9387.

    Article  Google Scholar 

  133. J. Zarei, M. A. Tajeddini and H. R. Karimi, Vibration analysis for bearing fault detection and classification using an intelligent filter, Mechatronics, 24 (2) (2014) 151–157.

    Article  Google Scholar 

  134. S. Korkua, H. Jain, W.-J. Lee and C. Kwan, Wireless health monitoring system for vibration detection of induction motors, Industrial and Commercial Power Systems Technical Conference (I&CPS), 2010 IEEE (2010) 1–6.

    Google Scholar 

  135. S. Aggarwal, N. Nešić and P. Xirouchakis, Cutting torque and tangential cutting force coefficient identification from spindle motor current, The International Journal of Advanced Manufacturing Technology, 65 (1–4) (2013) 81–95.

    Article  Google Scholar 

  136. G. Bi, A. Gasser, K. Wissenbach, A. Drenker and R. Poprawe, Identification and qualification of temperature signal for monitoring and control in laser cladding, Optics and Lasers in Engineering, 44 (12) (2006) 1348–1359.

    Article  Google Scholar 

  137. X. Courtois, A. Durocher, F. Escourbiac, J. Schlosser, R. Mitteau, M. Merola and R. Tivey, In-situ monitoring of actively cooled plasma facing components using acoustic and thermal methods, Physica Scripta, 2007 (T128) (2007) 189.

    Article  Google Scholar 

  138. H. Wu, Z. Yu and Y. Wang, Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model, The International Journal of Advanced Manufacturing Technology, 90 (5–8) (2017) 2027–2036.

    Article  Google Scholar 

  139. P. Lotrakul, W. San-Um and M. Takahashi, The monitoring of three-dimensional printer filament feeding process using an acoustic emission sensor, in sustainability through innovation in product life cycle design, Springer (2017) 499–511.

    Google Scholar 

  140. J. Carstensen, T. Carstensen, M. Pabst, F. Schulz, J. Friederichs, S. Aden, D. Kaczor, J. Kotlarski and T. Ortmaier, Condition monitoring and cloud-based energy analysis for autonomous mobile manipulation-smart factory concept with LUHbots, Procedia Technology, 26 (2016) 560–569.

    Article  Google Scholar 

  141. A. Rodriguez, D. Bourne, M. Mason, G. F. Rossano and J. Wang, Failure detection in assembly: Force signature analysis, 2010 IEEE Conference on Automation Science and Engineering (CASE) (2010) 210–215.

    Google Scholar 

  142. E. Gadelmawla, Computer vision algorithms for measurement and inspection of external screw threads, Measurement, 100 (2017) 36–49.

    Article  Google Scholar 

  143. H. Sohn and C. R. Farrar, Damage diagnosis using time series analysis of vibration signals, Smart Materials and Structures, 10 (3) (2001) 446.

    Article  Google Scholar 

  144. M. J. Pais and N. H. Kim, Predicting fatigue crack growth under variable amplitude loadings with usage monitoring data, Advances in Mechanical Engineering, 7 (12) (2015) 1687814015619135.

    Article  Google Scholar 

  145. A. Gontarz, L. Weiss and K. Wegener, Energy consumption measurement with a multichannel measurement system on a machine tool (2010).

    Google Scholar 

  146. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (1998) 903–995.

    MATH  Google Scholar 

  147. W.-S. Chu, M.-S. Kim, K.-H. Jang, J.-H. Song, H. Rodrigue, D.-M. Chun, Y. T. Cho, S. H. Ko, K.-J. Cho and S. W. Cha, From Design for manufacturing (DFM) to Manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift, International Journal of Precision Engineering and Manufacturing-Green Technology, 3 (2) (2016) 209–222.

    Article  Google Scholar 

  148. H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim and S. Do Noh, Smart manufacturing: Past research, present findings, and future directions, International Journal of Precision Engineering and Manufacturing-Green Technology, 3 (1) (2016) 111–128.

    Article  Google Scholar 

  149. K. Liu, P. Zhong, Q. Zeng, D. Li and S. Li, Application modes of cloud manufacturing and program analysis, Journal of Mechanical Science and Technology, 31 (1) (2017) 157–164.

    Article  Google Scholar 

  150. M. Weyrich, J.-P. Schmidt and C. Ebert, Machine-tomachine communication, IEEE Software, 31 (4) (2014) 19–23.

    Article  Google Scholar 

  151. P. Stenumgaard, J. Chilo, J. Ferrer-Coll and P. Angskog, Challenges and conditions for wireless machine-to-machine communications in industrial environments, IEEE Communications Magazine, 51 (6) (2013) 187–192.

    Article  Google Scholar 

  152. S. Gusmeroli, S. Piccione and D. Rotondi, IoT@ Work automation middleware system design and architecture, 2012 IEEE 17th Conference on Emerging Technologies & Factory Automation (ETFA) (2012) 1–8.

    Google Scholar 

  153. L. Pelusi, A. Passarella and M. Conti, Opportunistic networking: data forwarding in disconnected mobile ad hoc networks, IEEE Communications Magazine, 44 (11) (2006).

    Google Scholar 

  154. A. Weiss and A. Huber, User experience of a smart factory robot: Assembly line workers demand adaptive robots, arXiv preprint arXiv:1606.03846 (2016).

    Google Scholar 

  155. A. D. Orcesi and D. M. Frangopol, Optimization of bridge maintenance strategies based on structural health monitoring information, Structural Safety, 33 (1) (2011) 26–41.

    Article  Google Scholar 

  156. J. A. N. Malik, US expects energy savings through smart manufacturing, MRS Bulletin, 41 (1) (2016) 10.

    Article  MathSciNet  Google Scholar 

  157. C. R. Farrar and N. A. Lieven, Damage prognosis: The future of structural health monitoring, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365 (1851) (2007) 623–632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Additional information

Recommended by Editor Hyung Wook Park

Gil-Yong Lee received the B.S., M.S. and Ph.D. degrees from Seoul National University, Seoul, Korea in 2006, 2008, and 2013, respectively. After graduations, he conducted his research at the University of Washington, Seattle, WA from 2013 to 2016. Currently he is a Research Assistant Professor in the Institute of Advanced Machines and Design (IAMD) at the Seoul National University, Seoul, Korea. His research interests are in direct printing, nanoparticle printer, rapid prototyping, micro/nano fabrication, soft actuators and sensors, energy devices, composites, and acoustic metamaterials.

Sung-Hoon Ahn received the B.S. degree from University of Michigan, Ann Arbor, MI, USA in 1992, and M.S. and Ph.D. degrees from the Stanford University, CA, USA in 1994 and 1997, respectively. Currently, he is a Professor in the Dept. of Mechanical and Aerospace Engineering and Associate Dean in Graduate School of Engineering Practice at the Seoul National University, Seoul, Korea. His research interests include 3D Printing, Smart Soft Composite Materials, micro/ nano-scale fabrication (Laser, focused ion beam, milling drilling, and Nano Particle Deposition System), green manufacturing, energy device, and appropriate technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GY., Kim, M., Quan, YJ. et al. Machine health management in smart factory: A review. J Mech Sci Technol 32, 987–1009 (2018). https://doi.org/10.1007/s12206-018-0201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0201-1

Keywords

Navigation