Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 977–983 | Cite as

The influence of fire size on breakage time for double glazed curtain wall system in enclosure fire

  • Young Ki Choi
  • Ji Tae Kim
  • Min Geon Jeong
  • Seong Wook Cho
  • Hong Sun Ryou
Article
  • 2 Downloads

Abstract

The prediction of breakage time on curtain wall system is an important factor for the fire protection system in high-rise buildings. The breakage of glass is caused by thermal deformation of curtain wall frame. Also, thermal deformation could be influence by fire size. Therefore, in this study, numerical analysis is performed to investigate the effect of fire size on breakage time on double glazed curtain wall system. To investigate the effect of fire size on breakage time, the pool size is varied 0.4x0.4 m, 0.5x0.5 m and 0.6x0.6 m, respectively. As a result, the breakage times of glass are decreased as 170 s, 100 s and 38 s for the pool size varying 0.4x0.4 m, 0.5x0.5 m and 0.6x0.6 m, respectively. From the numerical results, the present study suggests the useful relationship between the heat release rate and breakage times as follow: t = -0.341×Q e + 257.64 (252.3 kw < Q e < 637.9 kw). In order to prevent breakage of glass curtain wall due to fire, fire protection system must be operated

Keywords

Curtain wall Fire size Thermal breakage Breakage time Frame Thermal stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. H. Cho, K. J. Youn, H. C. Yim, J. H. Kim and S. H. Shin, Market study of steel curtain wall and application for highrise buildings, Korea Society of Steel Construction, 22 (2) (2010) 27–33.Google Scholar
  2. [2]
    R. Rogan, Leap frog effect doctoral dissertation, Worcester Polytechnic Institute (2010).Google Scholar
  3. [3]
    Q. Wang, Y. Wang, Y. Zhang, H. Chen, J. Sun and L. He, A stochastic analysis of glass crack initiation under thermal loading, Applied Thermal Engineering, 67 (1) (2014) 447–457.CrossRefGoogle Scholar
  4. [4]
    H. Chen, Q. Wang, Y. Wang, H. Zhao, J. Sun and L. He, Experimental and numerical study of window glass breakage with varying shaded widths under thermal loading, Fire Technology, 53 (1) (2017) 43–64.CrossRefGoogle Scholar
  5. [5]
    Y. Wang, Q. Wang, J. Sun, L. He and K. M. Liew, Influence of fire location on the thermal performance of glass façades, Applied Thermal Engineering, 106 (2016) 438–442.CrossRefGoogle Scholar
  6. [6]
    Y. Wang, Q. Wang, G. Shao, H. Chen, Y. Su, J. Sun and K. M. Liew, Fracture behavior of a four-point fixed glass curtain wall under fire conditions, Fire Safety Journal, 67 (2014) 24–34.CrossRefGoogle Scholar
  7. [7]
    T. J. Shields, G. W. H. Silcock and S. K. S. Hassani, The behavior of double glazing in an enclosure fire, Journal of Applied Fire Science, 7 (3) (1998) 267–286.CrossRefGoogle Scholar
  8. [8]
    T. J. Shields, G. W. H. Silcock and S. K. S. Hassani, Behavior of glazing in a large simulated office block in a multistory building, Journal of Applied Fire Science, 7 (4) (1998) 333–352.CrossRefGoogle Scholar
  9. [9]
    T. J. Shields, G. W. H. Silcock and M. F. Flood, Performance of a single glazing assembly exposed to enclosure corner fires of increasing severity, Fire and Materials, 25 (4) (2001) 123–152.CrossRefGoogle Scholar
  10. [10]
    T. J. Shields, G. W. H. Silcock and M. Flood, Performance of a single glazing assembly exposed to a fire in the centre of an enclosure, Fire and Materials, 26 (2) (2002) 51–75.CrossRefGoogle Scholar
  11. [11]
    Y. Wang, Y. Wu, Q. Wang, K. M. Liew, H. Chen, J. Sun and L. He, Numerical study on fire response of glass facades in different installation forms, Construction and Building Materials, 61 (2014) 172–180.CrossRefGoogle Scholar
  12. [12]
    J. Nam, M. G. Jeong, H. S. Ryou, J. T. Kim, J.-S. Nam, D.-J. Kim and S. W. Cho, Validation of a numerical model for curtain walls with MVHS during free burning, Fire Safety Journal, 94 (2017) 45–53.CrossRefGoogle Scholar
  13. [13]
    G. Shao, Q. Wang, H. Zhao, Y. Wang, H. Chen, Y. Su and L. He, Maximum temperature to withstand water film for tempered glass exposed to fire, Construction and Building Materials, 57 (2014) 15–23.CrossRefGoogle Scholar
  14. [14]
    G. Shao, Q. Wang, H. Zhao, Y. Wang, J. Sun and L. He, Thermal breakage of tempered glass façade with downflowing water film under different heating rates, Fire Technology, 52 (2) (2016) 563–580.CrossRefGoogle Scholar
  15. [15]
    J. W. Lee, E. Y. Jang, S. H. Lee, H. S. Ryou, S. Choi and Y. Kim, Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment, International Journal of Thermal Sciences, 75 (2014) 36–44.CrossRefGoogle Scholar
  16. [16]
    S. C. Kim and S. H. Lee, Numerical prediction of smoke concentration in a compartment fire by using the modified volumetric heat source model, Korean Journal of Airconditioning and Refrigeration Engineering, 18 (4) (2006) 344–350.Google Scholar
  17. [17]
    D. Burgess, A. Strasser and J. Grumer, Diffusive burning of liquid fuels in open trays, Fire res Abstract and Review, 1 (1961).Google Scholar
  18. [18]
    V. Babrauskas, Burning rates, SFPE handbook of fire protection engineering, 1 (1995).Google Scholar
  19. [19]
    M. J. Hurley et al., SFPE handbook of fire protection engineering (2015).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Young Ki Choi
    • 1
  • Ji Tae Kim
    • 1
  • Min Geon Jeong
    • 1
  • Seong Wook Cho
    • 1
  • Hong Sun Ryou
    • 1
  1. 1.School of Mechanical EngineeringChung-Ang UniversityHeukseok-Dong, Dongjak-Gu, SeoulKorea

Personalised recommendations