Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 689–695 | Cite as

Effects of the interface position of water-air flow on turbulent wall structures

Article

Abstract

Direct numerical simulations (DNS) are performed to investigate the effect of the interface position of water-air flow on turbulence statistics and flow structures in wall-bounded water-air turbulent flow through a straight channel. Water depths of 90 and 180 viscous wall units, referred to as shallow-water and deep-water cases, respectively, are examined. Water-to-air density and viscosity ratios of 831.7 and 55.56 are considered to model a realistic flow condition at temperature of 25 oC and pressure of 1 atm. The Reynolds number and Froude number are set to 180 and 1.22 x 10-4, respectively, for both shallow-water and deep-water case, based on the friction velocity at the bottom wall, the half depth of the channel, and water density and viscosity. The Navier-Stokes equations are solved using a timesplitting projection method on an octree grid structure, while the deformation of the interface between water and air is computed using a volume-of-fluid method. With the presence of the water-air interface, velocity profiles in deep-water and shallow-water cases are found to slightly deviate from the log-law profile for a single phase turbulent flow in a channel. The deviation is magnified when the interface is placed closer to the log-law region. Turbulent velocity fluctuations in the water stream are found to be associated with quasi-streamwise vortices and hairpin vortices. The quasi-streamwise vortices which are attached close to the wall are found in both deep-water and shallow-water cases. However, the hairpin vortices of which leading portions are lifted away from the wall are found to be diminished in the shallow-water case while they are clearly observed in the deep-water case.

Keywords

Water-air flow Turbulent wall structures Direct numerical simulation Volume-of-fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Kumar, R. Gupta and S. Banerjee, An experimental investigation of the characteristics of free-surface turbulence in channel flow, Phys. Fluids, 10 (1998) 437.CrossRefGoogle Scholar
  2. [2]
    P. Lombardi, V. D. Angelis and S. Banerjee, Direct numerical simulation of near-interface turbulence in coupled gasliquid flow, Phys. Fluids, 8 (1996) 1643.CrossRefMATHGoogle Scholar
  3. [3]
    R. Nagaosa and R. A. Handler, Statistical analysis of coherent vortices near a free surface in a fully developed turbulence, Phys. Fluids, 15 (2) (2003) 375–394.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. Liu, A. Kermani, L. Shen and D. K. P. Yue, Investigation of coupled air-water turbulent boundary layers using direct numerical simulations, Phys. Fluids, 21 (6) (2009) 062108.CrossRefMATHGoogle Scholar
  5. [5]
    L. Shen and D. K. P. Yue, Large-eddy simulation of freesurface turbulence, J. Fluid Mech., 440 (2001) 75.CrossRefMATHGoogle Scholar
  6. [6]
    M. Fulgosi, D. Lakehal, S. Banerjee and V. D. Angelis, Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface, J. Fluid Mech., 482 (2003) 319–345.CrossRefMATHGoogle Scholar
  7. [7]
    W. Yue, C. L. Lin and V. C. Patel, Large eddy simulation of turbulent open-channel flow with free-surface simulated by level set method, Phys. Fluids, 17 (2005) 025108.CrossRefMATHGoogle Scholar
  8. [8]
    C. W. Hirt and B. D. Nichols, Volume of fluid method for the dynamics of free boundaries, J. Comput. Phys., 39 (1) (1981) 201–225.CrossRefMATHGoogle Scholar
  9. [9]
    E. Aulisa, S. Manservisi, R. Scardovelli and S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Compt. Phys., 225 (2) (2007) 2301 2319.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. Nagaosa, Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in fully developed turbulence, Phys. Fluids, 11 (1999) 1581.CrossRefMATHGoogle Scholar
  11. [11]
    W. T. Tsai, A numerical study of the evolution and structure of a turbulent shear layer under a free surface, J. Fluid Mech., 354 (1998) 239276.CrossRefGoogle Scholar
  12. [12]
    Y. Pan and S. Banerjee, A numerical study of free surface turbulence in channel flow, Phys. Fluids, 7 (1995) 1649.CrossRefMATHGoogle Scholar
  13. [13]
    K. Lam and S. Banerjee, On the condition of streak formation in a bounded turbulent flow, Phys. Fluids, 4 (1992) 306.CrossRefMATHGoogle Scholar
  14. [14]
    S. Popinet, An accurate adaptive solver for surface-tensiondriven interfacial flows, J. Comput. Phys., 228 (2009) 5838.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190 (2003) 572.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    G. Tomar, D. Fuster, S. Zaleski and S. Popinet, Multiscale simulations of primary atomization using Gerris, Comp. and Fluids., 39 (4) (2010) 18641874.MATHGoogle Scholar
  17. [17]
    J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285 (1995) 69.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. Jeong, F. Hussain, W. Schoppa and J. Kim, Coherent struc-tures near the wall in a turbulent channel flow, J. Fluid Mech., 332 (1997) 185.CrossRefMATHGoogle Scholar
  19. [19]
    J. Zhou, R. J. Adrian and S. Balachandar, Auto-generation of near wall vortical structure in channel flow, Phys. Fluids, 8 (1996) 288.CrossRefMATHGoogle Scholar
  20. [20]
    J. Kim, On the structure of wall-bounded turbulent flows, Phys. Fluids, 26 (1983) 2088.CrossRefMATHGoogle Scholar
  21. [21]
    S. Komori, Y. Murakami and H. Ueda, The relationship between surface-renewal and bursting motions in an open channel flow, J. Fluid Mech, 203 (1989) 103.CrossRefGoogle Scholar
  22. [22]
    R. J. Adrian, C. D. Meinhart and C. D. Tomkins, Vortex orga-nization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422 (2010) 1.CrossRefMATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Mechanical EngineeringPohang University of Science and TechnologyPohang, GyeongbukKorea

Personalised recommendations