Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 659–670 | Cite as

Nanofluid (H 2 O-Al 2 O 3 /CuO) flow over a heated square cylinder near a wall under the incident of Couette flow

  • Swati Sharma
  • Dilip K. Maiti
  • Md. Mahbub Alam
  • Bhupendra K. Sharma
Article
  • 60 Downloads

Abstract

A long heated cylinder was placed near a cold wall under the incident of a Couette flow. The conventional fluid was chosen as water (H 2 O). The nanoparticle materials were selected as Al 2 O 3 and CuO. The governing Navier-Stokes and energy equations were solved numerically through a finite volume method on a staggered grid system using QUICK scheme for convective terms and SIMPLE algorithm. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids (Particle concentrations (φ), diameter (d np ), and particle materials) and the fluid flow (Peclet number Pe and gap height ratio L) were explored here. The shifting of the front stagnation point due to the addition of nanoparticles in the base fluid was investigated. A comparison between the heat transfer enhancement (N uM ) of the cylinder and its drag coefficient’s (C D ) increment/reduction was made by presenting their ratio Nu M /CD. The least square method was applied to the numerical results to propose Nu M = Nu M (Pe) and Nu M = Nu M (L).

Keywords

FVM Heat transfer enhancement Nanofluid Heated square cylinder Gap height 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. J. Yang and L. M. Fu, Thermal and flow analysis of a heated electronic component, Int. J. Heat Mass Transf., 44 (12) (2001) 2261–2275.CrossRefMATHGoogle Scholar
  2. [2]
    S. U. S Choi, Enhancing thermal conductivity of fluid with nanoparticles in development and applications of non-Newtonian flows, ASME, 231 (1995) 99–105.Google Scholar
  3. [3]
    C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27 (2007) 1501–1506.CrossRefGoogle Scholar
  4. [4]
    W. H. Azmi, K. A. Hamid, N. A. Usri, R. Mamat and K. V. Sharma, Heat transfer augmentation of ethylene glycol: water nanofluids and applications—A review, Int. Commun. Heat Mass Transf., 75 (2016) 13–23.CrossRefGoogle Scholar
  5. [5]
    S. Kakaç and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52 (13) (2009) 3187–3196.CrossRefMATHGoogle Scholar
  6. [6]
    S. M. S. Murshed, K. C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47 (5) (2008) 560–568.CrossRefGoogle Scholar
  7. [7]
    B. E. Ebrahimnia, H. Niazmand, W. Duangthongsuk, S. Wongwises and M. Renksizulut, Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under laminar flow regime, Int J. Heat Mass Transf., 54 (19–20) (2011) 4376–4388.CrossRefMATHGoogle Scholar
  8. [8]
    A. Sharma and V. Eswaran, Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime, Numer. Heat Transf. Part A, 45 (2004) 247–269.CrossRefGoogle Scholar
  9. [9]
    S. Bhattacharya, D. K. Maiti and S. Dhinakaran, Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in wall proximity, Numer. Heat Transf. Part A, 50 (2006) 585–606.CrossRefGoogle Scholar
  10. [10]
    S. Dhinakaran, Heat transport from a bluff body near a moving wall at Re= 100, Int. J. Heat Mass Transf., 54 (25) (2011) 5444–5458.CrossRefMATHGoogle Scholar
  11. [11]
    S. H. Zeinali, S. G. Etemad and M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transf., 33 (4) (2006) 529–535.CrossRefGoogle Scholar
  12. [12]
    M. S. Valipour, R. Masoodi, S. Rashidi, M. Bovand and M. Mirhosseini, A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid, Int. J. Therm. Sci., 18 (4) (2014) 1305–1314.CrossRefGoogle Scholar
  13. [13]
    M. Bovand, S. Rashidi and J. A. Esfahani, Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle, Energy Conv. Mngmt., 97 (2015) 212–223.CrossRefGoogle Scholar
  14. [14]
    M. Sheikholeslami, M. Gorji-Bandpy and K. Vajravelu, Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder, Int. J. Heat Mass Transf., 80 (2015) 16–25.CrossRefGoogle Scholar
  15. [15]
    M. R. Salimpour and A. D. Parizi, Convective heat transfer of nanofluid flow through conduits with different crosssectional shapes, J. Mech. Sci. Eng., 29 (2) (2015) 707–713.Google Scholar
  16. [16]
    H. Heidary and M. J. Kermani, Heat transfer enhancement in a channel with block(s) effect and utilizing nanofluid, Int. J. Therm. Sci., 57 (2012) 163–171.CrossRefGoogle Scholar
  17. [17]
    M. Azimi and R. Riazi, MHD copper-water nanofluid flow and heat transfer through convergent-divergent channel, J. Mech. Sci. Eng., 30 (10) (2016) 4679–4686.Google Scholar
  18. [18]
    F. V. Etminan, E. Ebrahimnia, H. Niazmand and S. Wongwises, Unconfined laminar nanofluid flow and heat transfer around a square cylinder, Int. J. Heat Mass Transf., 55 (2012) 1475–1485.CrossRefMATHGoogle Scholar
  19. [19]
    S. Sarkar and S. Ganguly, Analysis of entropy generation during mixed convective heat transfer of nanofluids past a square cylinder in vertically upward flow, J. Heat Transf., 134 (2012) 122501.CrossRefGoogle Scholar
  20. [20]
    Z. Alloui, J. Guiet, P. Vasseur and M. Reggio, Natural convection of nanofluids in a shallow rectangular enclosure heated from the side, Canadian J. Chem. Eng., 90 (1) (2012) 69–78.CrossRefGoogle Scholar
  21. [21]
    A. Noghrehabadi, A. S. Behbahan and I. Pop, Thermophoresis and brownian effects on natural convection of nanofluids in a square enclosure with two pairs of heat source/sink, Int. J. Num. Meth. Heat Fluid Flow, 25 (5) (2015) 1030–1046.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    S. Malik and A. K. Nayak, Buoyancy driven heat transfer in nanofluids due to wall mounted heat source, Alex Eng. Journal, 55 (2016) 797–810.CrossRefGoogle Scholar
  23. [23]
    D. K. Maiti, Dependence of flow characteristics of rectangular cylinders near a wall on the incident velocity, Acta Mechanica, 222 (2011) 273–286.CrossRefMATHGoogle Scholar
  24. [24]
    M. Akbari, N. Galanis and A. Behzadmehr, Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, Int. J. Therm. Sci., 50 (8) (2011) 1343–1354.CrossRefGoogle Scholar
  25. [25]
    M. Corcione, M. Cianfrini, E. Habib and A. Quintino, Optimization of free convection heat transfer from vertical plates using nanofluids, J. Heat Transf., 134 (4) (2012) 042501.CrossRefGoogle Scholar
  26. [26]
    S. M. Vanaki, P. Ganesan and H. A. Mohammed, Numerical study of convective heat transfer of nanofluids: A review, Renew. Sustain. Energy Reviews, 54 (2016) 1212–1239.CrossRefGoogle Scholar
  27. [27]
    B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11 (2) (1998) 151–170.CrossRefGoogle Scholar
  28. [28]
    Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43 (19) (2000) 3701–3707.CrossRefMATHGoogle Scholar
  29. [29]
    J. Koo and C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanopart Res., 6 (6) (2004) 577–588.CrossRefGoogle Scholar
  30. [30]
    R. S. Vajjha and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer., 52 (21–22) (2009) 4675–4682.CrossRefMATHGoogle Scholar
  31. [31]
    D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong and S. Moon, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9 (2) (2009) e119–e123.CrossRefGoogle Scholar
  32. [32]
    N. Masoumi, N. Sohrabi and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, J. Phys. D. Appl. Phys., 42 (5) (2009) 055501.CrossRefGoogle Scholar
  33. [33]
    D. K. Maiti, Aerodynamic characteristics of rectangular cylinders near a wall, J. Ocean Eng., 54 (2012) 251–260.CrossRefGoogle Scholar
  34. [34]
    S. Bhattacharya and D. K. Maiti, Shear flow past a square cylinder near a wall, Int. J. Eng. Sci., 42 (2004) 2119–2134.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Swati Sharma
    • 1
  • Dilip K. Maiti
    • 2
  • Md. Mahbub Alam
    • 3
  • Bhupendra K. Sharma
    • 1
  1. 1.Department of MathematicsBirla Institute of Technology and SciencePilaniIndia
  2. 2.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnapurIndia
  3. 3.Institute for Turbulence-Noise-Vibration Interaction and Control, Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina

Personalised recommendations