Skip to main content
Log in

Resonating tactile stimulators based on piezoelectric polymer films

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We have designed, fabricated and tested piezoelectric polymer (Polyvinylidene fluoride, PVDF) film-based resonating actuators for tactile stimulation. The proposed resonating tactile stimulators are composed of 3×4 stimulating dot arrays with polyimide membranes. The air chambers placed on the PVDF films aid in indirect piezoelectric actuation and produce lower spring stiffnesses than are associated with conventional direct piezoelectric actuation. They can achieve large displacements with low input voltages. The performance of the proposed resonating tactile stimulators was characterized. The stimulators achieve an output displacement of 257.0 ± 1.5 nm, output pressure of 339.1 N/m2, and response time of 0.7 ms when an input voltage of 80 Vpk (52.5 kHz) is switched at 2 ms intervals (250 Hz). It has been experimentally demonstrated that the proposed flexible resonating actuators are capable of stimulating human skin to support tactile or braille displays integrated into tactile interface systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai and R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing, Science, 351 (6277) (2016) 1071–1074.

    Article  Google Scholar 

  2. J. S. Lee, K.-Y. Shin, O. J. Cheong, J. H. Kim and J. Jang, Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring, Sci. Rep., 5 (7887) (2015) 1–8.

    Google Scholar 

  3. V. M. Mastronardi, L. Ceseracciu, F. Guido, F. Rizzi, A. Athanassiou, M. De Vittorio and S. Petroni, Low stiffness tactile transducers based on AlN thin film and polyimide, Appl. Phys. Lett., 106, 162901 (2015) 1–5.

    Google Scholar 

  4. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh and W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires, Nat. Commun., 5 (3132) (1992) 1–8.

    Google Scholar 

  5. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese and Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater., 9 (10) (2010) 859–864.

    Article  Google Scholar 

  6. M. Ying, A. P. Bonifas, N. Lu, Y. Su, R. Li, H. Cheng, A. Ameen, Y. Huang and J. A. Rogers, Silicon nanomembranes for fingertip electronics, Nanotechnology, 23 (34) (2012) 1–7.

    Article  Google Scholar 

  7. L. R. Bobich, J. P. Warren, J. D. Sweeney, S. I. H. Tillery and M. Santello, Spatial localization of electrotactile stimuli on the fingertip in humans, Somat. Motor. Res., 24 (4) (2007) 179–188.

    Article  Google Scholar 

  8. H.-N. Ho and L. A. Jones, Modeling the thermal responses of the skin surface during hand-object interactions, J. Biomechanical Eng., 130 (2) (2008) 1–8.

    Article  Google Scholar 

  9. K.-B. Lim, H.-J. Lee, S.-S. Lim and Y.-I. Choi, Neuromuscular electrical and thermal-tactile stimulation for dysphagia caused by stroke: a randomized controlled trial, J. Rehabil Med., 41 (3) (2009) 174–178.

    Article  Google Scholar 

  10. H.-J. Kwon, S. W. Lee and S. S. Lee, Braille dot display module with a PDMS membrane driven by a thermopneumatic actuator, Sens. Actuators, A, 154 (2) (2009) 238–246.

    Article  Google Scholar 

  11. X. Wu, S.-H. Kim, H. Zhu, C.-H. Ji and M. G. Allen, A refreshable braille cell based on pneumatic microbubble actuators, J. Microelectromech. Syst., 21 (4) (2012) 908–916.

    Article  Google Scholar 

  12. M. Shikida, T. Imamura, S. Ukai, T. Miyaji and K. Sato, Fabrication of a bubble-driven arrayed actuator for a tactile display, J. Micromech. Microeng., 18 (6) (2008) 1–9.

    Article  Google Scholar 

  13. Y. Hagaa, W. Makishi, K. Iwami, K. Totsu, K. Nakamura and M. Esashi, Dynamic Braille display using SMA coil actuator and magnetic latch, Sens. Actuators A, 119 (2) (2005) 316–322.

    Article  Google Scholar 

  14. J. Streque, A. Talbi, P. Pernod and V. Preobrazhensky, Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications, J. Micromech. Microeng., 22 (9) (2012) 1–10.

    Article  Google Scholar 

  15. H.-S. Kim, M.-H. Choi, H.-W. Yeon, J.-H. Jun, J.-H. Yi, J.-R. Park, D.-W. Lim and S.-C. Chung, A new tactile stimulator using a planar coil type actuator, Sens. Actuators A, 178 (2012) 209–216.

    Article  Google Scholar 

  16. Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C. E. M. Demore, S. Cochran and S. T. McKinstry, Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging, Sensors, 15 (4) (2015) 8020–8041.

    Google Scholar 

  17. S. T. Choi, J. O. Kwon and F. Bauer, Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique, Sens. Actuators A, 203 (2013) 282–290.

    Article  Google Scholar 

  18. R. Vel´azquez, H. Hern´andez and E. Preza, A portable piezoelectric tactile terminal for braille readers, Appl. Bion. Biomech., 9 (1) (2012) 45–60.

    Article  Google Scholar 

  19. E. B. Goldstein, Sensation and perception, Ninth Ed., Wadsworth, Belmont, USA (2013).

    Google Scholar 

  20. M. Fritschi, M. Buss, K. Drewing, R. Zopf and M. O. Ernst, Tactile feedback systems, Proc. of the International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) 1–21.

    Google Scholar 

  21. D. Dalecki, S. Z. Child, C. H. Raeman and E. L. Carstensen, Tactile perception of ultrasound, J. Acoust. Soc. Am., 97 (5) (1995) 3165–3170.

    Article  Google Scholar 

  22. L. A. Jones and N. B. Sarter, Tactile displays: guidance for their design and application, Human Factors, 50 (1) (2008) 90–111.

    Article  Google Scholar 

  23. K. S. Ramadan, D. Sameoto and S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23 (3) (2014) 1–26.

    Article  Google Scholar 

  24. M. G. Allen, M. Mehregany, R. T. Howe and S. D. Senturia, Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films, Appl. Phys. Lett., 51 (4) (1987) 241–243.

    Google Scholar 

  25. American national standard: Accessible and usable buildings and facilities, Standard and Commentary ICC/ANSI A117.1-2003., USA (2003).

    Google Scholar 

  26. S. S. Rao, Mechanical vibrations, Pearson Education, Inc., New Jersey, USA (2004).

    Google Scholar 

  27. I. O. Wygant, M. Kupnik and B. T. Khuri-Yakub, Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell, Proc. of the International Symposium on IEEE Ultrasonics, Beijing, China (2008) 2111–2114.

    Google Scholar 

  28. C. D. Near, Piezoelectric actuator technology, Proc. of Smart Structures and Materials 1996: Smart Structures and Integrated Systems, San Diego, California, USA (1996) 246–258.

    Chapter  Google Scholar 

  29. J. S. Lee, G. H. Kim, S. M. Hong, H. J. Choi and Y. Seo, Surface functionalization of a poly(vinylidene fluoride): Effect on the adhesive and piezoelectric properties, ACS Appl. Mater., 1 (12) (2009) 2902–2908.

    Article  Google Scholar 

  30. S. Yoon, J. K. Sim and Y.-H. Cho, A flexible piezoelectric pulsewave energy harvester for application to highefficiency multi-functional skin patches, J. Microelectromech. Syst., 25 (2) (2016) 388–393.

    Article  Google Scholar 

  31. P. Ueberschlag, PVDF piezoelectric polymer, Sens. Rev., 21 (2) (2001) 118–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ho Cho.

Additional information

Recommended by Associate Editor Sang-Hee Yoon

Dae Geon Seo received the B.S. degree in Department of Mechanical Engineering from Yeungnam University, Korea, in 2006, and the M.S. degree in Nano Science and Technology Program from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 2009. He is currently with the Nanosentuating Systems Laboratory, Department of Bio and Brain Engineering, KAIST. His research interests are focused on N/MEMS sensors & actuators for human tactile interface applications.

Young-Ho Cho is the Professor of Bio and Brain Engineering Department and Mechanical Engineering Department at KAIST, where he has been active in nanotechnology convergence research as the Director of Cell Bench Research Center, the Director of NanoSentuating System Laboratory at KAIST. He also leads National Convergence Technology Programs as the Director of National Circulating Tumor Cell Research Center, the Director of National Research Laboratory for Skinattachable Human Emotion Monitoring Systems and the Head of Emerging Technology Convergence Program Headquarter for National Growth Engine, the Ministry of Science and ICT. Dr. Cho's research interests have been focused on the N/MEMS (Nano/Micro Electro Mechanical Systems), where bio-inspired sensors and actuators are integrated with cognitive profilers for the high-precision, low-power, low-cost processing of physical information carriers and biological substances in nano/micro-scales. Dr. Cho is a member of IEEE and ASME.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, D.G., Cho, YH. Resonating tactile stimulators based on piezoelectric polymer films. J Mech Sci Technol 32, 631–636 (2018). https://doi.org/10.1007/s12206-018-0110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0110-8

Keywords

Navigation