Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 631–636 | Cite as

Resonating tactile stimulators based on piezoelectric polymer films

Article
  • 66 Downloads

Abstract

We have designed, fabricated and tested piezoelectric polymer (Polyvinylidene fluoride, PVDF) film-based resonating actuators for tactile stimulation. The proposed resonating tactile stimulators are composed of 3×4 stimulating dot arrays with polyimide membranes. The air chambers placed on the PVDF films aid in indirect piezoelectric actuation and produce lower spring stiffnesses than are associated with conventional direct piezoelectric actuation. They can achieve large displacements with low input voltages. The performance of the proposed resonating tactile stimulators was characterized. The stimulators achieve an output displacement of 257.0 ± 1.5 nm, output pressure of 339.1 N/m2, and response time of 0.7 ms when an input voltage of 80 Vpk (52.5 kHz) is switched at 2 ms intervals (250 Hz). It has been experimentally demonstrated that the proposed flexible resonating actuators are capable of stimulating human skin to support tactile or braille displays integrated into tactile interface systems.

Keywords

Piezoelectric resonator Piezoelectric polymer Polymer actuator Tactile stimulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai and R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing, Science, 351 (6277) (2016) 1071–1074.CrossRefGoogle Scholar
  2. [2]
    J. S. Lee, K.-Y. Shin, O. J. Cheong, J. H. Kim and J. Jang, Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring, Sci. Rep., 5 (7887) (2015) 1–8.Google Scholar
  3. [3]
    V. M. Mastronardi, L. Ceseracciu, F. Guido, F. Rizzi, A. Athanassiou, M. De Vittorio and S. Petroni, Low stiffness tactile transducers based on AlN thin film and polyimide, Appl. Phys. Lett., 106, 162901 (2015) 1–5.Google Scholar
  4. [4]
    S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh and W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires, Nat. Commun., 5 (3132) (1992) 1–8.Google Scholar
  5. [5]
    S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese and Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater., 9 (10) (2010) 859–864.CrossRefGoogle Scholar
  6. [6]
    M. Ying, A. P. Bonifas, N. Lu, Y. Su, R. Li, H. Cheng, A. Ameen, Y. Huang and J. A. Rogers, Silicon nanomembranes for fingertip electronics, Nanotechnology, 23 (34) (2012) 1–7.CrossRefGoogle Scholar
  7. [7]
    L. R. Bobich, J. P. Warren, J. D. Sweeney, S. I. H. Tillery and M. Santello, Spatial localization of electrotactile stimuli on the fingertip in humans, Somat. Motor. Res., 24 (4) (2007) 179–188.CrossRefGoogle Scholar
  8. [8]
    H.-N. Ho and L. A. Jones, Modeling the thermal responses of the skin surface during hand-object interactions, J. Biomechanical Eng., 130 (2) (2008) 1–8.CrossRefGoogle Scholar
  9. [9]
    K.-B. Lim, H.-J. Lee, S.-S. Lim and Y.-I. Choi, Neuromuscular electrical and thermal-tactile stimulation for dysphagia caused by stroke: a randomized controlled trial, J. Rehabil Med., 41 (3) (2009) 174–178.CrossRefGoogle Scholar
  10. [10]
    H.-J. Kwon, S. W. Lee and S. S. Lee, Braille dot display module with a PDMS membrane driven by a thermopneumatic actuator, Sens. Actuators, A, 154 (2) (2009) 238–246.CrossRefGoogle Scholar
  11. [11]
    X. Wu, S.-H. Kim, H. Zhu, C.-H. Ji and M. G. Allen, A refreshable braille cell based on pneumatic microbubble actuators, J. Microelectromech. Syst., 21 (4) (2012) 908–916.CrossRefGoogle Scholar
  12. [12]
    M. Shikida, T. Imamura, S. Ukai, T. Miyaji and K. Sato, Fabrication of a bubble-driven arrayed actuator for a tactile display, J. Micromech. Microeng., 18 (6) (2008) 1–9.CrossRefGoogle Scholar
  13. [13]
    Y. Hagaa, W. Makishi, K. Iwami, K. Totsu, K. Nakamura and M. Esashi, Dynamic Braille display using SMA coil actuator and magnetic latch, Sens. Actuators A, 119 (2) (2005) 316–322.CrossRefGoogle Scholar
  14. [14]
    J. Streque, A. Talbi, P. Pernod and V. Preobrazhensky, Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications, J. Micromech. Microeng., 22 (9) (2012) 1–10.CrossRefGoogle Scholar
  15. [15]
    H.-S. Kim, M.-H. Choi, H.-W. Yeon, J.-H. Jun, J.-H. Yi, J.-R. Park, D.-W. Lim and S.-C. Chung, A new tactile stimulator using a planar coil type actuator, Sens. Actuators A, 178 (2012) 209–216.CrossRefGoogle Scholar
  16. [16]
    Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C. E. M. Demore, S. Cochran and S. T. McKinstry, Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging, Sensors, 15 (4) (2015) 8020–8041.Google Scholar
  17. [17]
    S. T. Choi, J. O. Kwon and F. Bauer, Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique, Sens. Actuators A, 203 (2013) 282–290.CrossRefGoogle Scholar
  18. [18]
    R. Vel´azquez, H. Hern´andez and E. Preza, A portable piezoelectric tactile terminal for braille readers, Appl. Bion. Biomech., 9 (1) (2012) 45–60.CrossRefGoogle Scholar
  19. [19]
    E. B. Goldstein, Sensation and perception, Ninth Ed., Wadsworth, Belmont, USA (2013).Google Scholar
  20. [20]
    M. Fritschi, M. Buss, K. Drewing, R. Zopf and M. O. Ernst, Tactile feedback systems, Proc. of the International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) 1–21.Google Scholar
  21. [21]
    D. Dalecki, S. Z. Child, C. H. Raeman and E. L. Carstensen, Tactile perception of ultrasound, J. Acoust. Soc. Am., 97 (5) (1995) 3165–3170.CrossRefGoogle Scholar
  22. [22]
    L. A. Jones and N. B. Sarter, Tactile displays: guidance for their design and application, Human Factors, 50 (1) (2008) 90–111.CrossRefGoogle Scholar
  23. [23]
    K. S. Ramadan, D. Sameoto and S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23 (3) (2014) 1–26.CrossRefGoogle Scholar
  24. [24]
    M. G. Allen, M. Mehregany, R. T. Howe and S. D. Senturia, Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films, Appl. Phys. Lett., 51 (4) (1987) 241–243.Google Scholar
  25. [25]
    American national standard: Accessible and usable buildings and facilities, Standard and Commentary ICC/ANSI A117.1-2003., USA (2003).Google Scholar
  26. [26]
    S. S. Rao, Mechanical vibrations, Pearson Education, Inc., New Jersey, USA (2004).Google Scholar
  27. [27]
    I. O. Wygant, M. Kupnik and B. T. Khuri-Yakub, Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell, Proc. of the International Symposium on IEEE Ultrasonics, Beijing, China (2008) 2111–2114.Google Scholar
  28. [28]
    C. D. Near, Piezoelectric actuator technology, Proc. of Smart Structures and Materials 1996: Smart Structures and Integrated Systems, San Diego, California, USA (1996) 246–258.CrossRefGoogle Scholar
  29. [29]
    J. S. Lee, G. H. Kim, S. M. Hong, H. J. Choi and Y. Seo, Surface functionalization of a poly(vinylidene fluoride): Effect on the adhesive and piezoelectric properties, ACS Appl. Mater., 1 (12) (2009) 2902–2908.CrossRefGoogle Scholar
  30. [30]
    S. Yoon, J. K. Sim and Y.-H. Cho, A flexible piezoelectric pulsewave energy harvester for application to highefficiency multi-functional skin patches, J. Microelectromech. Syst., 25 (2) (2016) 388–393.CrossRefGoogle Scholar
  31. [31]
    P. Ueberschlag, PVDF piezoelectric polymer, Sens. Rev., 21 (2) (2001) 118–126.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKAISTDaejeonKorea

Personalised recommendations