Skip to main content
Log in

Review of contact-resistance analysis in nano-material

  • Invited Review Paper
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Recently, investigating the unique electrical properties of low-dimensional (One- and two-dimensional) materials as alternatives to silicon has become popular among researchers. In order to observe the intrinsic properties and device performance, it is essential to elucidate the electron transport at the electrode/nanomaterial interface. This study reviews various current approaches used to evaluate the contact resistance of electronic devices based on the most representative low-dimensional nano-materials such as carbon nanotubes, nanowires, graphene and molybdenum disulfide. Various analytical factors that have generally not been considered in conventional electronics are introduced to define the contact resistance within the nano-meter scale. Additionally, a comparison of three different methods for determining the contact resistance to interpret experimental data is conducted. Finally, several attempted efforts to reduce the contact resistance are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Rhoderick, Metal-semiconductor contacts, IEE Proceedings I-Solid-State and Electron Devices, 129 (1) (1982) 1.

    Article  Google Scholar 

  2. W. Schottky, Zur halbleitertheorie der sperrschicht-und spitzengleichrichter, Zeitschrift für Physik, 113 (5) (1939) 367–414.

    Article  MATH  Google Scholar 

  3. N. Z. Haron and S. Hamdioui, Why is CMOS scaling coming to an END?, 3rd International Design and Test Workshop, IEEE (2008) 98–103.

    Google Scholar 

  4. Y. B. Kim, Challenges for nanoscale MOSFETs and emerging nanoelectronics, Transactions on Electrical and Electronic Materials, 11 (3) (2010) 93–105.

    Article  Google Scholar 

  5. T. Skotnicki, J. A. Hutchby, T. J. King, H.-S. Wong and F. Boeuf, The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance, IEEE Circuits and Devices Magazine, 21 (1) (2005) 16–26.

    Article  Google Scholar 

  6. A. D. Franklin, Nanomaterials in transistors: From high-performance to thin-film applications, Science, 349 (6249) (2015) aab2750.

    Article  Google Scholar 

  7. Y. Sun, H. Yu, N. Singh, K. Leong, E. Gnani, G. Baccarani, G. Lo and D. Kwong, Vertical-Si-nanowire-based nonvolatile memory devices with improved performance and reduced process complexity, IEEE Transactions on Electron Devices, 58 (5) (2011) 1329–1335.

    Article  Google Scholar 

  8. S. Das, H. Y. Chen, A. V. Penumatcha and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts, Nano Letters, 13 (1) (2012) 100–105.

    Article  Google Scholar 

  9. I. Popov, G. Seifert and D. Tománek, Designing electrical contacts to MoS2 monolayers: A computational study, Physical Review Letters, 108 (15) (2012) 156802.

    Article  Google Scholar 

  10. J. R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo and R. K. Kawakami, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts, Nano Letters, 13 (7) (2013) 3106–3110.

    Article  Google Scholar 

  11. F. Ahmed, M. S. Choi, X. Liu and W. J. Yoo, Carrier transport at the metal–MoS2 interface, Nanoscale, 7 (20) (2015) 9222–9228.

    Article  Google Scholar 

  12. S. M. Sze and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons (2006).

    Book  Google Scholar 

  13. D. K. Schroder and D. L. Meier, Solar cell contact resistance—A review, IEEE Transactions on Electron Devices, 31 (5) (1984) 637–647.

    Article  Google Scholar 

  14. A. Allain, J. Kang, K. Banerjee and A. Kis, Electrical contacts to two-dimensional semiconductors, Nature Materials, 14 (12) (2015) 1195.

    Article  Google Scholar 

  15. J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature (London), 391 (1998) 59.

    Article  Google Scholar 

  16. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. Geerligs and C. Dekker, Individual single-wall carbon nanotubes as quantum wires, Nature, 386 (6624) (1997) 474–477.

    Article  Google Scholar 

  17. S. C. Lim, J. H. Jang, D. J, Bae, G. H. Han, S. Lee, I. S. Yeo and Y. H. Lee, Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability, Applied Physics Letters, 95 (26) (2009) 264103.

    Article  Google Scholar 

  18. R. Boston, Z. Schnepp, Y. Nemoto, Y. Sakka and S. R. Hall, In Situ TEM observation of a microcrucible mechanism of nanowire growth, Science, 344 (6184) (2014) 623–626.

    Article  Google Scholar 

  19. S. Mohney, Y. Wang, M. A. Cabassi, K. Lew, S. Dey, J. Redwing and T. Mayer, Measuring the specific contact resistance of contacts to semiconductor nanowires, Solid-State Electronics, 49 (2) (2005) 227–232.

    Article  Google Scholar 

  20. K. Nagashio, T. Nishimura, K. Kita and A. Toriumi, Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance, 2009 IEEE International Electron Devices Meeting (IEDM), IEEE (2009) 1–4.

    Google Scholar 

  21. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu and P. Avouris, The origins and limits of metal-graphene junction resistance, Nature Nanotechnology, 6 (3) (2011) 179–184.

    Article  Google Scholar 

  22. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Letters, 12 (7) (2012) 3695–3700.

    Article  Google Scholar 

  23. H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Letters, 12 (9) (2012) 4674–4680.

    Article  Google Scholar 

  24. Y. Yoon, K. Ganapathi and S. Salahuddin, How good can monolayer MoS2 transistors be?, Nano Letters, 11 (9) (2011) 3768–3773.

    Article  Google Scholar 

  25. C. Gong, L. Colombo, R. M. Wallace and K. Cho, The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces, Nano Letters, 14 (4) (2014) 1714–1720.

    Article  Google Scholar 

  26. J. Kang, W. Liu, D. Sarkar, D. Jena and K. Banerjee, Computational study of metal contacts to monolayer transitionmetal dichalcogenide semiconductors, Physical Review X, 4 (3) (2014) 031005.

    Article  Google Scholar 

  27. Q. Cao, S. J. Han, G. S. Tulevski, A. D. Franklin and W. Haensch, Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed singlewalled carbon nanotubes, ACS Nano, 6 (7) (2012) 6471–6477.

    Article  Google Scholar 

  28. H. Liu, A. T. Neal and P. D. Ye, Channel length scaling of MoS2 MOSFETs, ACS Nano, 6 (10) (2012) 8563–8569.

    Article  Google Scholar 

  29. R. de Picciotto, H. Stormer, L. Pfeiffer, K. Baldwin and K. West, Four-terminal resistance of a ballistic quantum wire, Nature, 411 (6833) (2001) 51.

    Article  Google Scholar 

  30. J. Na, M. Shin, M. K. Joo, J. Huh, Y. J. Kim, H. J. Choi, J. H. Shim and G. T. Kim, Separation of interlayer resistance in multilayer MoS2 field-effect transistors, Applied Physics Letters, 104 (23) (2014) 233502.

    Article  Google Scholar 

  31. H. Y. Chang, W. Zhu and D. Akinwande, On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals, Applied Physics Letters, 104 (11) (2014) 113504.

    Article  Google Scholar 

  32. D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons (2006).

    Google Scholar 

  33. B. İşcan, Strength of lap joints with embedded cover plate, Journal of Mechanical Science and Technology, 29 (5) (2015) 2105–2110.

    Article  Google Scholar 

  34. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite and M. Chhowalla, Phase-engineered lowresistance contacts for ultrathin MoS2 transistors, Nature Materials, 13 (12) (2014) 1128.

    Article  Google Scholar 

  35. J. Kang, W. Liu and K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts, Applied Physics Letters, 104 (9) (2014) 093106.

    Article  Google Scholar 

  36. H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Letters, 13 (5) (2013) 1991–1995.

    Article  Google Scholar 

  37. H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou and P. D. Ye, Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers, ACS Nano, 8 (1) (2013) 1031–1038.

    Article  Google Scholar 

  38. D. Kiriya, M. Tosun, P. Zhao, J. S. Kang and A. Javey, Airstable surface charge transfer doping of MoS2 by benzyl viologen, Journal of the American Chemical Society, 136 (22) (2014) 7853–7856.

    Article  Google Scholar 

  39. M. M. Perera, M. W. Lin, H. J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. C. Cheng, D. Tománek and Z. Zhou, Improved carrier mobility in few-layer MoS2 fieldeffect transistors with ionic-liquid gating, Acs Nano, 7 (5) (2013) 4449–4458.

    Article  Google Scholar 

  40. J. Wang, Q. Yao, C. W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu and X. Xiao, High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer, Advanced Materials, 28 (37) (2016) 8302–8308.

    Article  Google Scholar 

  41. S. M. Song, J. K. Park, O. J. Sul and B. J. Cho, Determination of work function of graphene under a metal electrode and its role in contact resistance, Nano Letters, 12 (8) (2012) 3887–3892.

    Article  Google Scholar 

  42. E. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem, Physical Review B, 62 (24) (2000) R16267.

    Article  Google Scholar 

  43. G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip and B. Van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Physical Review B, 62 (8) (2000) R4790.

    Article  Google Scholar 

  44. S. Das and J. Appenzeller, Where does the current flow in two-dimensional layered systems?, Nano Letters, 13 (7) (2013) 3396–3402.

    Article  Google Scholar 

  45. M. S. Fuhrer and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nature Nanotechnology, 8 (3) (2013) 146–147.

    Article  Google Scholar 

  46. X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang and F. Ye, Multiterminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nature Nanotechnology, 10 (6) (2015) 534–540.

    Article  Google Scholar 

  47. Y. Liu, H. Wu, H. C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo and N. O. Weiss, Toward barrier free contact to molybdenum disulfide using graphene electrodes, Nano Letters, 15 (5) (2015) 3030–3034.

    Article  Google Scholar 

  48. Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch and D. Y. Peide, MoS2 field-effect transistors with graphene/metal heterocontacts, IEEE Electron Device Letters, 35 (5) (2014) 599–601.

    Article  Google Scholar 

  49. B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti and A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (3) (2011) 147–150.

    Article  Google Scholar 

  50. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105 (13) (2010) 136805.

    Article  Google Scholar 

  51. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Letters, 11 (12) (2011) 5111–5116.

    Article  Google Scholar 

  52. B. Radisavljevic, M. B. Whitwick and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano, 11 (12) (2011) 5111–5116.

    Google Scholar 

  53. M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape and P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions, Scientific Reports, 3 (2013).

  54. X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang and A. L. Hsu, Parallel stitching of 2D materials, Advanced Materials, 28 (12) (2016) 2322–2329.

    Article  Google Scholar 

  55. M. H. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C. J. Kim, D. A. Muller, D. C. Ralph and J. Park, Atomically-thin ohmic edge contacts between two-dimensional materials, ACS Nano, 10 (6) (2016) 6392–6399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Chan Jun.

Additional information

Recommended by Editor Jungho Hwang

Seong Chan Jun worked at the NSEC (Nano Scale Science & Research Center) and the SAIT (Samsung Advanced Institute of Technology) sequentially after he received Ph.D. from Columbia University (New York, NY). He was Appointed Professor at Yonsei University (Seoul, Korea) and has been there since 2008.

Jae Young Park recieved his B.S. degree in mechanical engineering from Yonsei University in 2016. He is now an M.S. candidate in mechanical engineering in Yonsei University. One of his research specialities is nano electronics with two-dimensional materials.

Jinsoo Cho worked at Samsung Electronics Co. Ltd. after he recieved Ph.D. from Georgia Institute of Technology (Atlanta, GA). He is currently an Associate Professor in the Dept. of Computer Engineering, Gachon University (Seongnam, Korea) since 2006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Cho, J. & Jun, S.C. Review of contact-resistance analysis in nano-material. J Mech Sci Technol 32, 539–547 (2018). https://doi.org/10.1007/s12206-018-0101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0101-9

Keywords

Navigation