M. N. Armenise, C. Ciminelli, F. V. Dell'Olio and M. N. Passaro, Advances in gyroscope technologies, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin (2010).
MATH
Google Scholar
R. F. Deimel, Mechanics of the gyroscope, Dover Publications Inc., New York (2003).
MATH
Google Scholar
G. Greenhill, Report on gyroscopic theory, General Books LLC, London (2010).
MATH
Google Scholar
J. B. Scarborough, The gyroscope theory and applications, Fairford, GLOS, U. K. (2015).
MATH
Google Scholar
B. Neil, Gyroscope, The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts (2014) Doi: http://dx.doi.org/10.1036/1097-8542.304100.
Google Scholar
C. Acar and A. Shkel, MEMS vibratory gyroscopes: Structural approaches to improve robustness, Springer Science & Business Media, New York (2008).
Google Scholar
H. Weinberg, Gyro mechanical performance: The most important parameter, Technical Article MS-2158, Analog Devices, Norwood, MA (2011) 1–5.
Google Scholar
R. C. Hibbeler, Engineering mechanics-Statics and dynamics, 13th Ed., Prentice Hall, Pearson, Singapore (2015).
MATH
Google Scholar
D. R. Gregory, Classical mechanics, Cambridge University Press, New York (2006).
Book
MATH
Google Scholar
J. Syngley and J. J. Uicker, Theory of machines and mechanisms, Third Ed., McGraw-Hill Book Company, New York (2002).
Google Scholar
M. D. Aardema, Analytical dynamics. Theory and application, Academic/Plenum Publishers, New York (2005).
Book
Google Scholar
R. M. Jonsson, Gyroscope precession in special and general relativity from basic principles, American Journal of Physics, 75 (2007) 463, http://dx.doi.org/10.1119/1.2719202.
Article
Google Scholar
W. C. Liang and S. C. Lee, Vorticity, gyroscopic precession, and spin-curvature force, Physical Review D, 87 (2013) http://dx.doi.org/10.1103/PhysRevD.87.044024.
Google Scholar
Y. W. Kim and H. H. Yoo, Design of a vibrating MEMS gyroscope considering design variable uncertainties, Journal of Mechanical Science and Technology, 24 (11) (2010) 2175–2180.
Article
Google Scholar
E. Butikov, Inertial rotation of a rigid body, Europien Journal of Physics, 27 (2006) 913–922.
MathSciNet
Article
Google Scholar
L. Zyga, Gyroscope's unexplained acceleration may be due to modified inertia, PhysOrg.com, July 26 (2011).
Google Scholar
M. Zareh and S. Soheili, A modified model reference adaptive control with application to MEMS gyroscope, Journal of Mechanical Science and Technology, 25 (8) (2011) 2061–2066.
Article
Google Scholar
J. A. Ferrari, Gyroscope's precession and the principle of equivalence, Annalen der Physik, 501 (5) (2006) 399–400, Doi: 10.1002/andp.19895010513.
Article
Google Scholar
D.-J. Jwo, J.-H. Shih, C.-S. Hsu and K.-L. You, Development of a strapdown inertial navigation system simulation platform, Journal of Mechanical Science and Technology, June (2014) Doi: 10.6119/JMST-013-0909-5.
Google Scholar
J. Li, Z.-M. Lei, L.-Q. Sun and S.-W. Yan, Mechanism and model testing of pipelay vessel roll affected by large period swells, Journal of Marine Science and Technology (2016) Doi: 10.6119/JMST-016-0125-2.
Google Scholar
F. Klein and A. Sommerfeld, The theory of the top, New York, NY: Springer, Birkhäuser, I-IV (2008-2014).
MATH
Google Scholar
R. Usubamatov, K. A. Ismail and J. M. Sah, Analysis of a coriolis acceleration, Journal of Advanced Science and Engineering Research, 4 (1) March (2014) 1–8.
Google Scholar
R. Usubamatov, Mathematical model for gyroscope effects, Proceedings of AIP Conference, 1660, 050018 (2015) Doi: 10.1063/1.4915651.
Article
Google Scholar
R. Usubamatov, Properties of gyroscope motion about one axis, International Journal of Advancements in Mechanical and Aeronautical Engineering, 2 (1) (2015) 39–44, ISSN: I2372-4153.
Google Scholar
R. Usubamatov, A mathematical model for motions of gyroscope suspended from flexible cord, Cogent Engineering, 3 (2016) 1245901, http://dx.doi.org/10.1080/23311916.2016.1245901.
Article
Google Scholar