Skip to main content
Log in

A new impedance force control of a haptic teleoperation system for improved transparency

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a new impedance force control model of a haptic device for teleoperation is developed and analyzed. A new contact force model for the haptic device and the human hand is provided. Movements of the human hand give additional force disturbances to the force control system. Disturbance force model by haptic dynamics and hand movements is fully analyzed and included in the control system design. An adaptive control scheme is proposed to improve system transparency by achieving good force tracking performance, while simultaneously compensating human hand disturbances and sensor noises. A separate reference model for every DOF is proposed to satisfy tracking performances. Adaptive control gains cover force tracking performance and compensates for human hand disturbances while providing robustness to sensor noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sheridan, Space teleoperation through time delay: Review and prognosis, IEEE Transaction on Robotics and Automation, 9 (5) (1993) 592–606.

    Article  Google Scholar 

  2. G. Hirzinger, B. Brunner, J. Dietrich and J. Heindl, Sensorbased space robotics-Rotex and its telerobotic features, IEEE Transaction on Robotics and Automation, 9 (5) (1993) 649–663.

    Article  Google Scholar 

  3. W. K. Yoon, T. Goshozono, H. Kawabe, M. Kinami, M. Uchiyama, M. Oda and T. Doi, Modespace l-based robot teleoperation of ETS-VII manipulator, IEEE Transaction on Robotics and Automation, 20 (3) (2004) 602–612.

    Article  Google Scholar 

  4. G. A. Landis, Teleoperation from Mars orbit: a proposal for human exploration, Acta Astronautica, 62 (2008) 59–65.

    Article  Google Scholar 

  5. T. Hirabayashi, J. Akizono, T. Yamamoto, H. Sakai and H. Yano, Teleoperation of construction machines with haptic information for underwater applications, Automation in Construction, 15 (2006) 563–570.

    Article  Google Scholar 

  6. Y. Hironao, T. Kyoji and M. Takayoshi, Master-slave control for teleoperation construction robot system, Transactions of Japanese Society of Mechanical Engineering, 66 (651) (2000) 3664–3671.

    Article  Google Scholar 

  7. D. Kim, J. Kim, K. Lee, C. Park, J. Song and D. Kang, Excavator tele-operation system using a human arm, Automation in Construction, 18 (2009) 173–182.

    Article  Google Scholar 

  8. W. Wang and K. Yuan, Teleoperated manipulator for leak detection of sealed radioactive sources, Proceedings of IEEE International Conference on Robotics and Automation (2004) 1682–1687.

    Google Scholar 

  9. X. He and Y. Chen, Six-degree-of-freedom haptic rendering in virtual teleoperation, IEEE Transaction on Instrumentation and Measurement, 57 (9) (2008) 1866–1875.

    Article  Google Scholar 

  10. C. Preusche, T. Ortmaier and G. Hirzinger, Teleoperation concepts in minimal invasive surgery, Control Engineering Practice, 10 (11) (2002) 1245–1250.

    Article  Google Scholar 

  11. A. E. Saddik, M. Orozco, Y. Asfaw, S. Shirmohammadi and A. Adler, A novel biometric system for identification and verification of haptic users, IEEE Transaction on Instrumentation and Measurement, 56 (3) (2007) 895–906.

    Article  Google Scholar 

  12. C. R. Carignan and H. I. Krebs, Telerehabilitation robotics: Bright lights, big future?, Journal of Rehabilitation Research and Development, 43 (5) (2006) 695–710.

    Article  Google Scholar 

  13. D. Lawrence, Stability and transparency in bilateral teleoperation, IEEE Transaction on Robotics and Automation, 9 (5) (1993) 624–637.

    Article  Google Scholar 

  14. K. Fite, J. E. Speich and M. Goldfarb, Transparency and stability robustness in two-channel bilateral telemanipulation, ASME Journal of Dynamic Systems, Measurement, and Control, 123 (3) (1999) 400–407.

    Article  Google Scholar 

  15. A. Alfi and M. Farrokhi, A simple structure for bilateral transparent teleoperation systems with time delay, ASME Journal of Dynamic Systems, Measurement, and Control, 130 (4) (2008) 044502.

    Article  Google Scholar 

  16. H. Lee and M. J. Chung, Adaptive controller of a masterslave system for transparent teleoperation, Journal of Robotic Systems, 15 (8) (1998) 465–475.

    Article  MATH  Google Scholar 

  17. C. Seo, J. Kim, H. Ahn and J. Ryu, Robustly stable bilateral teleoperation under time-varying delays and data losses: An energy-bounding approach, Journal of Mechanical Science and Technology, 25 (8) (2011) 2089–2100.

    Article  Google Scholar 

  18. B. Hannaford, A design framework for teleoperations with kinesthetic feedback, IEEE Transaction on Robotics and Automation, 5 (4) (1989) 426–434.

    Article  Google Scholar 

  19. G. Niemeyer and J. Slotine, Stable adaptive teleoperation, IEEE Journal of Oceanic Engineering, 16 (1) (1991) 152–162.

    Article  Google Scholar 

  20. B. Hannaford and R. Anderson, Experimental and simulation studies of hard contact in force reflecting teleoperation, Proceedings of IEEE International Conference on Robotics and Automation (1988) 584–589.

    Google Scholar 

  21. G. Niemeyer and J. Slotine, Telemanipulation with time delays, International Journal of Robotic Research, 23 (9) (2004) 873–890.

    Article  Google Scholar 

  22. T. A. Lasky and T. C. Hsia, On force-tracking impedance control of robot manipulators, Proceedings of IEEE International Conference on Robotics and Automation (1991) 274–280.

    Google Scholar 

  23. S. Jung and T. C. Hsia, Neural network impedance force control of robot manipulators, IEEE Transaction on Industrial Electronics, 45 (3) (2009) 451–461.

    Article  Google Scholar 

  24. K. Wen, D. Necsulescu and J. Sasiadek, Haptic force control based on impedance/admittance control aided by visual feedback, Multimedia Tools Applications, 37 (1) (2008) 39–52.

    Article  Google Scholar 

  25. J. J. Gil, A. Rubio and J. Savall, Decreasing the apparent inertia of an impedance haptic device by using force feedforward, IEEE Transaction on Control System and Technology, 17 (4) (2009) 833–838.

    Article  Google Scholar 

  26. A. Abdossalami and S. Sirouspour, Adaptive control of haptic interaction with impedance and admittance type, IEEE Proceeding of Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, Nevada, USA (2008) 145–152.

    Chapter  Google Scholar 

  27. A. Frisoli, E. Sotgiu, C. A. Avizzano, D. Checcacci and M. Bergamasco, Force-based impedance control of a haptic master system for teleoperation, Sensor Review, 24 (1) (2004) 42–50.

    Article  Google Scholar 

  28. E. L. Faulring, J. E. Colgate and M. A. Peshkin, The cobotic hand controller: Design, control and performance of a novel haptic display, International Journal of Robotics Research, 25 (11) (2006) 1099–1119.

    Article  Google Scholar 

  29. N. Hogan, Impedance control: An approach to manipulation part I,II,III, ASME Journal of Dynamic Systems, Measurement, and Control, 107 (1) (1985) 1–24.

    Article  MATH  Google Scholar 

  30. Z. Lu and A. A. Goldenberg, Robust impedance control and force regulation: theory and experiments, The International Journal of Robotic Research, 14 (3) (1995) 225–254.

    Article  Google Scholar 

  31. R. Anderson and M. W. Spong, Hybrid impedance control of robotic manipulators, IEEE Transaction on Robotics and Automation, 4 (5) (1988) 549–556.

    Article  Google Scholar 

  32. A. Abdossalami and S. Sirouspour, Adaptive control for improved transparency in haptic simulations, IEEE Transaction on Haptics, 2 (1) (2009) 2–14.

    Article  Google Scholar 

  33. H. Park and J. M. Lee, Adaptive impedance control of a haptic interface, Mechatronics, 14 (2004) 558–570.

    Google Scholar 

  34. K. Hosseini-Suny, H. Momeni and F. Janabi-Sharifi, A modified adaptive controller design for teleoperation systems, Robotis and Autonomous Systems, 58 (2010) 679–683.

    MATH  Google Scholar 

  35. T. Tsuji, P. Morasso, K. Goto and K. Ito, Human hand impedance characteristics during maintained posture, Biological Cybernetics, 72 (1995) 475–485.

    Article  MATH  Google Scholar 

  36. J. E. Speich, L. Shao and M. Goldfarb, Modeling the human hand as it interacts with a telemanipulation system, Mechatronics, 15 (2005) 1127–1142.

    Article  Google Scholar 

  37. H. S. Woo and D. Y. Lee, Exploitation of the impedance and characteristics of the human arm in the design of haptic interfaces, IEEE Transaction on Industrial Electronics, 58 (8) (2011) 3221–3233.

    Article  Google Scholar 

  38. W. H. Zhu and S. E. Salcudean, Stability guaranteed teleoperations: an adaptive motion/force control approaches, IEEE Tranaction on Automatic Control, 45 (11) (2000) 1951–1969.

    Article  MATH  Google Scholar 

  39. J. J. E. Slotine and W. Li, Composite adaptive control of robot manipulators, Automatica, 25 (4) (1989) 509–519.

    Article  MathSciNet  MATH  Google Scholar 

  40. K. Shyu, M. Yang, Y. Chen and Y. Lin, Model reference adaptive control design for a shunt active-power-filter system, IEEE Transaction on Industrial Electronics, 55 (1) (2008) 97–106.

    Article  Google Scholar 

  41. T. Senjyu, T. Kashiwagi and K. Uezato, Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference, IEEE Transaction on Power Electronics, 17 (2) (2002) 265–272.

    Article  Google Scholar 

  42. R. Kamnik, D. Matko and T. Bajd, Application of model reference adaptive control to industrial robot impedance control, Journal of Intelligent and Robotic Systems, 22 (2) (1998) 153–163.

    Article  MATH  Google Scholar 

  43. K. Hosseini-Suny and H. Momeni, Model reference adaptive control design for a teleoperation system with output prediction, Journal of Intelligent and Robotic Systems, 59 (3) (2010) 319–339.

    Article  MATH  Google Scholar 

  44. M. Sharifi, S. Behzadipour and G. Vossoughi, Nonlinear model reference adaptive impedance control for humanrobot interactions, Control Engineering Practice, 32 (2014) 9–27.

    Article  Google Scholar 

  45. Jean-Jacques, E. Slotine and Weiping Li, Applied nonlinear control, Prentice Hall, USA (1991).

    MATH  Google Scholar 

  46. V. M. Hung and U. J. Na, A new 6-DOF haptic device for Tele-operation of a 6-DOF serial robots, IEEE Transaction on Instrumentation and Measurements, 60 (11) (2011) 3510–3523.

    Article  Google Scholar 

  47. P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, USA (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uhn Joo Na.

Additional information

Recommended by Associate Editor Sangyoon Lee

Uhn Joo Na received the Ph.D. degree in mechanical engineering from Texas A&M University, College Station, in 2000. He was a Senior Researcher at Korea Institute of Machinery and Material (KIMM) from 2002 to 2004 before joining the Faculty at Kyungnam University, Changwon, Korea. His current research interests include haptic device design and control, teleoperation, robotics, and magnetic bearings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, U.J. A new impedance force control of a haptic teleoperation system for improved transparency. J Mech Sci Technol 31, 6005–6017 (2017). https://doi.org/10.1007/s12206-017-1145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-1145-6

Keywords

Navigation