Advertisement

Journal of Mechanical Science and Technology

, Volume 31, Issue 11, pp 5359–5365 | Cite as

Development of a transportability evaluation system using swept path analysis and multi-body dynamic simulation

  • Hyun-Tae Hwang
  • Soo-Hong Lee
  • Ji Woong Lee
  • Hee Chan Kim
  • Min Hyuk Woo
  • Kweon Woo Moon
  • Jiaqi Lu
  • Hyungseok Ohk
  • Jae Kwan Kim
  • Hyo-won Suh
Article
  • 67 Downloads

Abstract

In this study, we develop a transportability evaluation system for the transportation process or design process in product development engineering. The system extracts the constraint condition and transportability using swept path analysis and multi-body dynamic simulation. This system consists of two main software modules: a feature curve extraction module and a multi-body dynamic simulation module. The feature curve extraction module extracts the feature curve list of the entire transportation path with swept path analysis to transmit the information to the simulation module. The multi-body dynamic simulation module extracts the constraint condition for the product design process that a designer uses as the transportation constraint in the design process or quick checks the transportability of the product files. The entire structure of the system is accessible by a web-based platform. When the user (designer) inputs the product files and the transportation information, the system gives the constraints and transportability to the user. The entire analysis is performed by a background process on the analysis server. We also propose a multimodal transportability evaluation algorithm that considers design and dynamic conditions.

Keywords

Evaluation system Multi-body dynamic simulation Swept path analysis Transportability Transportation simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Pecchini and F. Giuliani, Experimental test of an articulated lorry swept path, Journal of Transportation Engineering, 139 (12) (2013) 1174–1183.CrossRefGoogle Scholar
  2. [2]
    H. Mahmassani, K. Zhang, J. Dong, C. C. Lu, V. Arcot and E. Miller-Hooks, Dynamic network simulation-assignment platform for multiproduct intermodal freight transportation analysis, Transportation Research Record: Journal of the Transportation Research Board, 2032 (2007) 9–16.CrossRefGoogle Scholar
  3. [3]
    J. R. Current, C. S. Revelle and J. L. Cohon, The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation networks, Transportation Science, 21 (3) (1987) 188–197.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson and I. Söderkvist, Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles, Automation Science and Engineering, IEEE Transactions on, 7 (1) (2010) 167–172.CrossRefGoogle Scholar
  5. [5]
    D. Pecchini and F. Giuliani, Experimental test of an articulated lorry swept path, Journal of Transportation Engineering, 139 (12) (2013) 1174–1183.CrossRefGoogle Scholar
  6. [6]
    D. Rubinstein and R. Hitron, A detailed multi-body model for dynamic simulation of off-road tracked vehicles, Journal of Terramechanics, 41 (2) (2004) 163–173.CrossRefGoogle Scholar
  7. [7]
    B. G. Eom and H. S. Lee, Assessment of running safety of railway vehicles using multibody dynamics, International Journal of Precision Engineering and Manufacturing, 11 (2) (2010) 315–320.CrossRefGoogle Scholar
  8. [8]
    D. Kading, Multibody dynamic simulation of military vehicles for stability, safety, mobility, and load prediction, In Defense and Security Symposium, International Society for Optics and Photonics, 62280 (2006).Google Scholar
  9. [9]
    R. R. Teixeira, S. R. Moreira and S. M. O. Tavares, Multibody dynamics simulation of an electric bus, Procedia Engineering, 114 (2015) 470–477.CrossRefGoogle Scholar
  10. [10]
    R. Berman, R. Benade and B. Rosman, Autonomous prediction of performance-based standards for heavy vehicles, Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASARobMech) (2015) 184–188Google Scholar
  11. [11]
    T. Dessin, F. Kienhöfer and P. Nordengen, Determining the optimal performance based standards heavy vehicle design, Proceedings of the International Symposium of Heavy Vehicle (2012).Google Scholar
  12. [12]
    A. Jo, K. Park and C. Lee, Examination of modeling methods for tower crane transportation using multibody dynamics, Journal of the Society of Naval Architects of Korea, 52 (4) (2015) 330–337.CrossRefGoogle Scholar
  13. [13]
    S. Vadlamudi, M. Blundell and Y. Zhang, A multi-body systems approach to simulate helicopter occupant protection systems, International Journal of Crashworthiness, 16 (2) (2011) 207–218.CrossRefGoogle Scholar
  14. [14]
    N. Bouton, R. Lenain, B. Thuilot and J. C. Fauroux, A rollover indicator based on the prediction of the load transfer in presence of sliding: Application to an all terrain vehicle, Robotics and Automation, 2007 IEEE International Conference on (2007) 1158–1163Google Scholar
  15. [15]
    R. J. Taylor, P. Yih and J. C. Gerdes, Safety performance and robustness of heavy vehicle AVCS, California Partners for Advanced Transit and Highways (PATH) (2005).Google Scholar
  16. [16]
    L. Li and Q. Li, Vibration analysis based on full multi-body model for the commercial vehicle suspension system, Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation World Scientific and Engineering Academy and Society (WSEAS) (2007) 203–207Google Scholar
  17. [17]
    J. S. Jang, W. S. Yoo, H. Kang, J. W. Cho, M. S. Jeong, S. K. Lee and J. Rostami, Cutting head attachment design for improving the performance by using multibody dynamic analysis, International Journal of Precision Engineering and Manufacturing, 17 (3) (2016) 371–377.CrossRefGoogle Scholar
  18. [18]
    K. Akagi, K. Murayama, M. Yoshida and J. Kawahata, Modularization technology in power plant construction, 10th International Conference on Nuclear Engineering American Society of Mechanical Engineers (2002) 641–647Google Scholar
  19. [19]
    S. Park, K. Kim, N. Park and M. Chae, Simulation analysis of transporting fixation equipment on unit module, The Korean Institute of Building Construction, 13 (2) (2013) 143–144.Google Scholar
  20. [20]
    K. Kim, C. Kim, D. Lee and Y. Lee, Development of a Korean modular housing construction scenario, The Korean Institute of Building Construction, 11 (1) (2011) 81–83.Google Scholar
  21. [21]
    S. Park, K. Kim, N. Park and I. Jung, Study of improved transporting methods on unit module, The Korean Institute of Building Construction, 12 (2) (2012) 243–244.CrossRefGoogle Scholar
  22. [22]
    J. M. Zuñiga and J. L. Mantari, A computational methodology to calculate the required power in disc crushers, Journal of Computational Design and Engineering, 4 (1) (2017) 14–20.CrossRefGoogle Scholar
  23. [23]
    C. G. Lee and S. C. Park, Survey on the virtual commissioning of manufacturing systems, Journal of Computational Design and Engineering, 1 (3) (2014) 213–222.CrossRefGoogle Scholar
  24. [24]
    J. H. Woo, J. H. Nam and K. H. Ko, Development of a simulation method for the subsea production system, Journal of Computational Design and Engineering, 1 (3) (2014) 173–186.CrossRefGoogle Scholar
  25. [25]
    K. Moon, J. Mok, S. Chang, Y. Kim and S. Lee, Turning characteristics of articulated vehicles related to geometric design, Korean Society for Railway (2007) 39–45Google Scholar
  26. [26]
    E. Rohmer, S. P. Singh and M. Freese, V-REP: A versatile and scalable robot simulation framework, Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (2013) 1321–1326Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Hyun-Tae Hwang
    • 1
  • Soo-Hong Lee
    • 1
  • Ji Woong Lee
    • 1
  • Hee Chan Kim
    • 1
  • Min Hyuk Woo
    • 1
  • Kweon Woo Moon
    • 1
  • Jiaqi Lu
    • 1
  • Hyungseok Ohk
    • 1
  • Jae Kwan Kim
    • 1
    • 2
  • Hyo-won Suh
    • 3
  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulKorea
  2. 2.Center for BionicsKorea Institute of Science and TechnologySeoulKorea
  3. 3.Department of Industrial & Systems EngineeringKAISTDaejeonKorea

Personalised recommendations