Skip to main content
Log in

Prediction of the phase distribution of diesel/CNG bubbly flow in a horizontal pipe under the influence of a magnetic field

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper describes an analytical study of the magneto hydrodynamics of small CNG bubbles in laminar horizontal diesel flow under the influence of a magnetic field. The investigation is based on experiments carried out to identify the effect of varying the magnetic field intensity on the trajectory, the formation of bubbles and their shape and velocity in the flow. Different images at different positions downstream of the CNG bubbles injection point were captured by a high speed camera and analyzed by image processing techniques provided information on bubble velocity, bubbles size, spatial location and gas area fraction as a function of changing the magnetic field intensity. The outcomes confirmed that CNG bubbles under magnetic field grow up vertically to an elliptical shape in the diesel phase with a mean diameter about twice that of the original bubble. It was also noticed that the velocity of the CNG bubbles decreased as the strength of the magnetic field increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ki, Level set method for two-phase flows under magnetic fields, Computer Physics Communications (2010) 999–1007

    Google Scholar 

  2. L. Rayleigh, The pressure developed in a liquid on the collapse of a spherical cavity, Phil. Mag., 34 (1917) 94.

    Article  MATH  Google Scholar 

  3. M. Plesset, The dynamics of cavitation bubbles, ASME J. Appl. Mech., 16 (1949) 228–231.

    Google Scholar 

  4. M. Plesset, The growth of vapor bubbles in superheated fluids, J. Appl. Phys., 25 (1954) 96.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. A. Crum and A. I. Eller, Motion of bubbles in a stationary sound field, J. Acoust. Soc. Am., 48 (1970) 181–189.

    Article  Google Scholar 

  6. H. G. Flynn, Cavitation dynamics: I. A mathematical formulation, J. Acoust. Soc. Am., 57 (1975) 1379.

    Article  MATH  Google Scholar 

  7. W. Lauterborn, Numerical investigations of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Am., 59 (1976) 283.

    Article  Google Scholar 

  8. A. Prosperetti, The equation of bubble dynamics in a compressible liquid, Phys. Fluids., 30 (1987) 3626.

    Article  MATH  Google Scholar 

  9. A. Prosperetti, Bubble dynamics: Some things we did not know 10 years ago in bubble dynamics and interface phenomena, Kluwer (1994) 3.

    Book  Google Scholar 

  10. A. Prosperetti and A. Lezzi, Bubble dynamics in a compressible liquid. Part 1: First order theory, J. Fluid Mech., 168 (1986) 457.

    Article  MATH  Google Scholar 

  11. Y. Mori, K. Hijikata and I. Juriyama, Experimental study of bubble motion in mercury with and without magnetic field, Winter Annual Meeting of ASME, Heat Transfer Division, New York, 5 December (1976) (ASME 76-WA/HT-65).

    Google Scholar 

  12. M. Plesset and A. Prosperetti, Bubble dynamics and cavitation, Ann. Rev. Fluid Mech., 9 (1977) 145.

    Article  MATH  Google Scholar 

  13. S. M. Shin and I. S. Kang, Effects of magnetic field on the shape of a bubble in a uniaxial straining flow, Int. J. Multiphase Flow, 28 (2002) 105–125.

    Article  MATH  Google Scholar 

  14. K. Takatani, Mathematical modeling of incompressible MHD flows with free surface, ISIJ Int., 47 (2007) 545–551.

    Article  Google Scholar 

  15. K. Shibasaki, K. Ueno and T. Tagawa, Computation of a rising bubble in an enclosure filled with liquid metal under vertical magnetic fields, ISIJ Int., 50 (2010) 363–370.

    Article  Google Scholar 

  16. D. Merrouche, K. Mohammedi and I. Belaidi, Coupling the VOF and the MHD models for the simulation of bubble rising in a metallic liquid, Int. J. Mater. Form., 1 (2008) 1107–1110.

    Article  Google Scholar 

  17. Y. Shibasaki, K. Ueno and T. Tagawa, Computation of a rising bubble in an enclosure filled with liquid metal under vertical magnetic fields, ISIJ Int., 50 (3) (2010) 363–370.

    Article  Google Scholar 

  18. S. Yosuke, U. Kazuyuki and T. Toshio, Computation of a rising bubble in an enclosure filled with liquid metal under vertical magnetic fields, ISIJ International, 50 (3) (2010) 363–370.

    Article  Google Scholar 

  19. X. Miao, D. Lucas, Z. Ren, S. Eckert and G. Gerbeth, Numerical modeling of bubble-driven liquid metal flows with external static, International Journal of Multiphase Flow, 48 (2013) 32–45.

    Article  Google Scholar 

  20. H. A. A. Wahhab, A. R. A. Aziz, H. H. Al-Kayiem and M. S. Nasif, Mathematical modeling of the flow of diesel-CNG fuel mixture in a pipe under the influence of a magnetic field, Journal of Applied Fluid Mechanics, 10 (1) (2017) 389–396.

    Article  Google Scholar 

  21. K. Ekambara, R. S. Sanders, K. Nandakumar and J. H. Masliyah, CFD simulation of bubbly two-phase flow in horizontal pipes, Chemical Engineering Journal, 144 (2008) 277–288.

    Article  Google Scholar 

  22. M. Sussman and J. A. Smereka, Axisymmetric free boundary problems, Journal of Fluid Mechanics, 341 (1997) 269–294.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Bhaga and M. E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, Journal of Fluid Mechanics, 105 (1981) 61–85.

    Article  Google Scholar 

  24. K. Brunner and J. S. Chang, Flow regime transition under electric fields in horizontal two-phase flow, Proceedings of 15th IEEE Industry Applications Society Conference (1980) 1052–1058

    Google Scholar 

  25. K. Brunner, P. T. Wan and J. S. Chang, Flow pattern maps for horizontal gas liquid two-phase flow under d.c. electric field. In electrostatics, Institute of Physics Conference Series, 66 (1983) 215–220.

    Google Scholar 

  26. J. Ishimoto, M. Okubo, S. Kamiyama and M. Higashitani, Bubble behavior in magnetic fluid under a non-uniform magnetic field, International Journal of JSME, 38 (3) (1995) 382–387.

    Article  Google Scholar 

  27. J. G. Hnat and J. D. Buckmaster, Spherical cap bubbles and skirt formation, The Physics of Fluids, 19 (1976) 182–194.

    Article  MATH  Google Scholar 

  28. D. Wyttl, A. Laura, A. Karen and J. Jeffery, Electric properties of polycrystalline methane hydrate, Geoph. Resc. Lett., 38 (9) (2011) L09313.

    Google Scholar 

  29. EnviroFuels, Envirofuels, ultra-low sulfur diesel (EUSD), operational challenges facing engine operators (2007) www.envirofuelslp.com/pdfs/TechnicalBulletin-070307.

    Google Scholar 

  30. S. Laurent, S. Dutz, U. O. Hafeli and M. Mahmoudi, Magnetic fluid hyperthermia: Focus on super paramagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, 166 (1-2) (2011) 8–23.

    Article  Google Scholar 

  31. J. Alam, U. Riaz and S. Ahmad, Effect of Ferro fluid concentration on electrical and magnetic properties of the Fe3O4/PANI Nano composites, J. Magn. Magn. Mater., 314 (2007) 93–99.

    Article  Google Scholar 

  32. Q. Yu, M. Shi, Y. Cheng, M. Wang and H. Chen, Fe3O4@ Au/polyaniline multifunctional Nano composites: Their preparation and optical, electrical and magnetic properties, Nanotechnology, 19 (2008) 265702.

    Google Scholar 

  33. C. Xu, C. Ouyang, R. Jia, Y. Li and X. Wang, Magnetic and optical properties of poly(vinylidene difluoride)/Fe3O4 nanocomposite prepared by coprecipitation approach, J. Appl. Polym. Sci., 111 (2009) 1763–1768.

    Article  Google Scholar 

  34. J. Zhan, G. Tian, L. Jiang, Z. Wu, D. Wu, X. Yang and R. Jin, Superparamagnetic polyimide/γ-Fe2O3 nanocomposite films: Preparation and characterization, Thin Solid Films, 516 (2008) 6315–6320.

    Article  Google Scholar 

  35. D. C. Sun and D. S. Sun, The synthesis and characterization of electrical and magnetic nanocomposite: PEDOT/PSS-Fe3O4, Mater. Chem. Phys., 118 (2009) 288–292.

    Article  Google Scholar 

  36. M. J. Kao, C. C. Ting, B. F. Lin and T. T. Tsung, Aqueous aluminium nano fluid combustion in diesel fuel, Journal of Testing and Evaluation, 36 (2008).

    Google Scholar 

  37. A. Genovese, N. Contrisciani, F. Ortenzi and V. Cazzola, On road experimental tests of hydrogen/natural gas blends on transit buses, International Journal of Hydrogen Energy, 36 (2) (2011) 1775–1783.

    Article  Google Scholar 

  38. B. R. Sarath, Ferrofluid-diesel blend, International Journal of Scientific and Research Publications, 5 (6) (2015) 1–4.

    Google Scholar 

  39. P. R. Bevington and D. K. Robinson, Data reduction and error analysis, McGraw-Hill (2003).

    Google Scholar 

  40. A. Frank, T. W. Jones, D. Ryu and J. B. Gaalaas, The MHD Kelvin-Helmholtz instability: A two-dimensional numerical study, ArXiv preprint astro-ph/9510115 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rashid A. Aziz.

Additional information

Recommended by Associate Editor Weon Gyu Shin

Hasanain A. Abdul Wahhab had B.Sc. of Mechanical Engineering from University of Technology 1996 and M.Sc. of mechanical engineering with combustion field from University of Technology 2000 in Iraq. He is a Lecturer in Mechanical Engineering Department at University of Technology-Baghdad. Currently, his research work is focused on pre-mixing dieselgas fuel two phase by utilizing magnetization fluid. He has membership with Iraqi engineers union.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahhab, H.A.A., Aziz, A.R.A., Al-Kayiem, H.H. et al. Prediction of the phase distribution of diesel/CNG bubbly flow in a horizontal pipe under the influence of a magnetic field. J Mech Sci Technol 31, 5299–5309 (2017). https://doi.org/10.1007/s12206-017-1024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-1024-1

Keywords

Navigation