Skip to main content
Log in

A molecular dynamics study on atomistic mechanisms of nano-scale cutting process of sapphire

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Sapphire is a promising material for various optical, electronic, and mechanical applications, but is very difficult to machine due to its high hardness and brittleness. In this study we attempt to study fundamental atomistic mechanisms of nano-scale cutting of sapphire using Molecular dynamics (MD). Atomistic models for diamond cutting of sapphire are developed using Vashishta and Lennard-Jones potentials and MD simulations address the effects of the tool edge radius and uncut chip thickness on the cutting process. Cutting and normal forces with different cutting parameters are calculated and compared with the experimental data in previous research. An analysis using a local measurement of atomistic strain also reveals detailed deformation mechanisms of the sapphire cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gu, C. W. Jeon, H. W. Choi, G. Rice, M. D. Dawson, E. K. Illy and M. R. H. Knowles, Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser, Thin Solid Films, 453–454 (2004) 462–466.

    Article  Google Scholar 

  2. Z. C. Li, Z. J. Pei and P. D. Funkenbusch, Machining processes for sapphire wafers: a literature review, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225 (2011) 975–989.

    Article  Google Scholar 

  3. C. D. Jones, J. B. Rioux, J. W. Locher, H. E. Bates, S. A. Zanefla, V. Pluen and M. Mandelartz, Large-area sapphire for transparent armor, American Ceramic Society Bulletin, 85 (2006) 24–26.

    Google Scholar 

  4. B. Vogt, Scooping of sapphire domes on CNC machines, Industrial Diamond Review, 65 (2005) 24–26.

    Google Scholar 

  5. H. Park and H. M. Chan, A novel process for the generation of pristine sapphire surfaces, Thin Solid Films, 422 (2002) 135–140.

    Article  Google Scholar 

  6. J. C. Huang and Y. J. Weng, The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy, Scanning, 36 (2014) 599–607.

    Article  Google Scholar 

  7. K. Liu, D. Zuo, X. P. Li and M. Rahman, Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools, Journal of Vacuum Science & Technology B, 27 (2009) 1361–1366.

    Article  Google Scholar 

  8. G. Saurav, The current understanding on the diamond machining of silicon carbide, Journal of Physics D: Applied Physics, 47 (2014) 243001.

    Article  Google Scholar 

  9. P. S. Pizani, R. Jasinevicius, J. G. Duduch and A. J. V. Porto, Ductile and brittle modes in single-point-diamond-turning of silicon probed by Raman scattering, Journal of Materials Science Letters, 18 (1999) 1185–1187.

    Article  Google Scholar 

  10. Z. Kato, M. Sakairi and H. Takahashi, Nanopatterning on aluminum surfaces with AFM probe, Surface and Coatings Technology, 169–170 (2003) 195–198.

    Article  Google Scholar 

  11. Y. Geng, Y. Yan, Y. Xing, X. Zhao and Z. Hu, Modelling and experimental study of machined depth in AFM-based milling of nanochannels, International Journal of Machine Tools and Manufacture, 73 (2013) 87–96.

    Article  Google Scholar 

  12. O. Takumi, N. Shinya and S. Jun-ichi, Scratch nanolithography on Si surface using scanning probe microscopy: Influence of scanning parameters on groove size, Japanese Journal of Applied Physics, 47 (2008) 712.

    Article  Google Scholar 

  13. M. G. Mostofa, C. I. Park and S. S. Park, AFM probe based nano mechanical scribing of soda-lime glass, Journal of Manufacturing Processes, 15 (2013) 625–634.

    Article  Google Scholar 

  14. K. Maekawa and A. Itoh, Friction and tool wear in nanoscale machining—a molecular dynamics approach, Wear, 188 (1995) 115–122.

    Article  Google Scholar 

  15. C.-J. Kim, R. Mayor and J. Ni, Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge, International Journal of Precision Engineering and Manufacturing, 13 (2012) 1303–1309.

    Article  Google Scholar 

  16. S. Goel, X. Luo, A. Agrawal and R. L. Reuben, Diamond machining of silicon: A review of advances in molecular dynamics simulation, International Journal of Machine Tools and Manufacture, 88 (2015) 131–164.

    Article  Google Scholar 

  17. O. A. Olufayo and K. Abou-El-Hossein, Molecular dynamics modeling of nanoscale machining of silicon, Procedia CIRP, 8 (2013) 504–509.

    Article  Google Scholar 

  18. C. Rambaut, K. H. Oh, H. Jaffrezic, J. Kohanoff and S. Fayeulle, Molecular dynamics simulation of electron trapping in sapphire, Journal of Applied Physics, 81 (1997) 3263–3267.

    Article  Google Scholar 

  19. W. Wunderlich and H. Awaji, Molecular dynamics — simulations of the fracture toughness of sapphire, Materials & Design, 22 (2001) 53–59.

    Article  Google Scholar 

  20. Y. G. Xu, K. Behdinan and Z. Fawaz, Molecular dynamics calculation of the J - integral fracture criterion for nano-sized crystals, International Journal of Fracture, 130 (2004) 571–583.

    Article  Google Scholar 

  21. Z. C. Lin and Y. C. Hsu, Simulation analysis of nanocutting on the surface of sapphire, Advanced Materials Research, 579 (2012) 184–192.

    Article  Google Scholar 

  22. Z.-C. Lin and Y.-C. Hsu, A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe, Journal of Materials Processing Technology, 212 (2012) 2321–2331.

    Article  Google Scholar 

  23. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, 81 (1984) 511.

    Article  Google Scholar 

  24. W. G. Hoover, Molecular dynamics, Springer (1986).

    MATH  Google Scholar 

  25. T. Shardlow, Splitting for dissipative particle dynamics, Siam Journal on Scientific Computing, 24 (2003) 1267–1282.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Vashishta, R. K. Kalia, A. Nakano and J. P. Rino, Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina, Journal of Applied Physics, 103 (2008) 083504.

    Article  Google Scholar 

  27. V. R. Bhethanabotla and W. A. Steele, Moleculardynamics simulations of oxygen monolayers on graphite, Langmuir, 3 (1987) 581–587.

    Article  Google Scholar 

  28. N. Silvestre, B. Faria and J. N. C. Lopes, Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics, Composites Science and Technology, 90 (2014) 16–24.

    Article  Google Scholar 

  29. S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, Journal of Computational Physics, 117 (1995) 1–19.

    Article  MATH  Google Scholar 

  30. S. Alexander, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 18 (2010) 015012.

    Article  Google Scholar 

  31. N. C. Admal and E. B. Tadmor, A unified interpretation of stress in molecular systems, Journal of Elasticity, 100 (2010) 63–143.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. L. Falk and J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Physical Review E, 57 (1998) 7192–7205.

    Article  Google Scholar 

  33. P. K. Wright and E. M. Trent, Metal cutting, Butterworth-Heinemann (2000).

    Google Scholar 

  34. M. B. Cai, X. P. Li, M. Rahman and A. A. O. Tay, Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon, International Journal of Machine Tools and Manufacture, 47 (2007) 562–569.

    Article  Google Scholar 

  35. G. Binnig, C. F. Quate and C. Gerber, Atomic force microscope, Physical Review Letters, 56 (1986) 930–933.

    Article  Google Scholar 

  36. R. W. Carpick and M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chemical Reviews, 97 (1997) 1163–1194.

    Article  Google Scholar 

  37. A. A. Tseng, S. Jou, A. Notargiacomo and T. P. Chen, Recent developments in tip-based nanofabrication and its roadmap, Journal of Nanoscience and Nanotechnology, 8 (2008) 2167–2186.

    Article  Google Scholar 

  38. A. Aramcharoen and P. T. Mativenga, Size effect and tool geometry in micromilling of tool steel, Precision Engineering, 33 (2009) 402–407.

    Article  Google Scholar 

  39. K. Liu and S. N. Melkote, Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process, International Journal of Mechanical Sciences, 49 (2007) 650–660.

    Article  Google Scholar 

  40. M. C. Shaw, The size effect in metal cutting, Sadhana-Academy Proceedings in Engineering Sciences, 28 (2003) 875–896.

    Google Scholar 

  41. J. A. Patten and W. Gao, Extreme negative rake angle technique for single point diamond nano-cutting of silicon, Precision Engineering, 25 (2001) 165–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hyun Kim.

Additional information

Recommended by Associate Editor Haseung Chung

Woo Kyun Kim received his Ph.D. in mechanical engineering from the University of Michigan, USA in 2009. He is currently Assistant Professor in the Department of Mechanical and Materials Engineering at the University of Cincinnati, USA. His research interests include atomic-scale friction and crystalline defects.

Bo Hyun Kim received his Ph.D. in mechanical engineering from Seoul National University in 2005. He is currently Associate Professor in the Department of Mechanical Engineering at Soongsil University, Seoul, South Korea. His research interests include micro machining and non-conventional machining processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W.K., Kim, B.H. A molecular dynamics study on atomistic mechanisms of nano-scale cutting process of sapphire. J Mech Sci Technol 31, 4353–4362 (2017). https://doi.org/10.1007/s12206-017-0834-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0834-5

Keywords

Navigation