Skip to main content
Log in

Temporal evolution in a dissipative air-coupled spherical dielectric elastomer actuator

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A viscoelastic model is developed for a dissipative Thin spherical dielectric elastomer actuator (TSDEA), with which the air-coupled effect and the ambient pressure effect are considered. The evolution equation is constructed by using the rheological model and is solved by employing the improved Euler method. The sealed air in the TSDEA is governed by the ideal gas state equation. Numerical results show that the air-coupled effect is helpful for evolving into the stable state. It also shows that the ambient pressure and the loading parameters play an important role on the temporal evolution behavior of the TSDEA. The TSDEA can evolve into a much larger size configuration in a low ambient pressure environment than that in a high ambient pressure environment. The model can be employed to analyze or predict the viscoelastic behaviors of a TSDEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Liu, J. R. Li, Y. J. Liu, J. S. Leng, J. Q. Zhao and J. W. Zhao, Electric field induced variation of temperature and entropy in dielectric elastomers, J. Mech. Sci. Technol., 29 (1) (2015) 109–114.

    Article  Google Scholar 

  2. T. F. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Yang and Z. G. Suo, Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability, J. Mech. Phys. Solids, 61 (2) (2013) 611–628.

    Article  Google Scholar 

  3. J. S. Leng, L. W. Liu, Y. J. Liu, K. Yu and S. H. Sun, Electromechanical stability of dielectric elastomer, Appl. Phys. Lett., 94 (21) (2009) 211901.

    Article  Google Scholar 

  4. L. W. Liu, Y. J. Liu, K. Yu and J. S. Leng, Thermoelectromechanical stability of dielectric elastomers undergoing temperature variation, Mech. Mater., 72 (2014) 33–45.

    Article  Google Scholar 

  5. L. W. Liu, Y. J. Liu, X. J. Luo, B. Li and J. S. Leng, Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation, Mech. Mater., 55 (2012) 60–72.

    Article  Google Scholar 

  6. L. W. Liu, K. Yu, Y. J. Liu and J. S. Leng, Polar elastic dielectric of large electrocaloric effect and deformation, Mech. Mater., 69 (1) (2014) 71–92.

    Article  Google Scholar 

  7. M. Cho and A. Yamamoto, Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage, J. Mech. Sci. Technol., 30 (9) (2016) 4285–4290.

    Article  Google Scholar 

  8. J. X. Zhou, W. Hong, X. H. Zhao, Z. Q. Zhang and Z. G. Suo, Propagation of instability in dielectric elastomers, Int. J. Solids Struct., 45 (13) (2008) 3739–3750.

    Article  MATH  Google Scholar 

  9. T. Q. Lu and Z. G. Suo, Large conversion of energy in dielectric elastomers by electromechanical phase transition, Acta Mech. Sin., 28 (4) (2012) 1106–1114.

    Article  MATH  Google Scholar 

  10. M. Aschwanden, M. Beck and A. Stemmer, Diffractive transmission grating tuned by dielectric elastomer actuator, IEEE Photon. Technol. Lett., 19 (14) (2007) 1090–1092.

    Article  Google Scholar 

  11. Y. Wang, J. X. Zhou, W. J. Sun, X. H. Wu and L. Zhang, Mechanics of dielectric elastomer-activated deformable transmission grating, Smart Mater. Struct., 23 (9) (2014) 095010.

    Article  Google Scholar 

  12. S. Shian, R. M. Diebold and D. R. Clarke, Tunable lenses using transparent dielectric elastomer actuators, Opt. Express, 21 (7) (2013) 8669–8676.

    Article  Google Scholar 

  13. Y. J. Liu, L. W. Liu, Z. Zhang, Y. Jiao, S. H. Sun and J. S. Leng, Analysis and manufacture of an energy harvester based on a Mooney-Rivlin–type dielectric elastomer, EPL, 90 (3) (2010) 36004.

    Article  Google Scholar 

  14. T. G. McKay, S. Rosset, I. A. Anderson and H. Shea, Dielectric elastomer generators that stack up, Smart Mater. Struct., 24 (1) (2015) 015014.

    Article  Google Scholar 

  15. R. Vertechy, G. P. P. Rosati and M. Fontana, Reduced model and application of inflating circular diaphragm dielectric elastomer generators for wave energy harvesting, J. Vib. Acoust., 137 (1) (2015) 011004.

    Article  Google Scholar 

  16. X. F. Lv, L. W. Liu, Y. J. Liu and J. S. Leng, Dielectric elastomer energy harvesting: maximal converted energy, viscoelastic dissipation and a wave power generator, Smart Mater. Struct., 24 (11) (2015) 115036.

    Article  Google Scholar 

  17. R. K. Sahu, A. Saini, D. Ahmad, K. Patra and J. Szpunar, Estimation and validation of maxwell stress of planar dielectric elastomer actuators, J. of Mechanical Science and Technology, 30 (1) (2016) 429–436.

    Article  Google Scholar 

  18. Y. J. Liu, L. W. Liu, Z. Zhang and J. S. Leng, Dielectric elastomer film actuators: characterization, experiment and analysis, Smart Mater. Struct., 18 (9) (2009) 095024.

    Article  Google Scholar 

  19. M. Giousouf and G. Kovacs, Dielectric elastomer actuators used for pneumatic valve technology, Smart Mater. Struct., 22 (10) (2013) 104010.

    Article  Google Scholar 

  20. Z. G. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sin., 23 (6) (2010) 549–578.

    Article  Google Scholar 

  21. J. Zhu, S. Q. Cai and Z. G. Suo, Nonlinear oscillation of a dielectric elastomer balloon, Polym. Int., 59 (3) (2010) 378–383.

    Article  Google Scholar 

  22. H. D. Yong, X. Z. He and Y. H. Zhou, Dynamics of a thick-walled dielectric elastomer spherical shell, Int. J. Eng. Sci., 49 (8) (2011) 792–800.

    Article  Google Scholar 

  23. X. Z. He, H. D. Yong and Y. H. Zhou, The characteristics and stability of a dielectric elastomer spherical shell with a thick wall, Smart Mater. Struct., 20 (5) (2011) 055016.

    Article  Google Scholar 

  24. S. Rudykh, K. Bhattacharya and G. de Botton, Snapthrough actuation of thick-wall electroactive balloons, Int. J. Non-Linear Mech., 47 (2) (2012) 206–209.

    Article  Google Scholar 

  25. W. J. Sun, H. M. Wang and J. X. Zhou, Actuation and instability of interconnected dielectric elastomer balloons, Appl. Phys. A, 119 (2) (2015) 443–449.

    Article  Google Scholar 

  26. X. D. Liang and S. Q. Cai, Shape bifurcation of a spherical dielectric elastomer balloon under the actions of internal pressure and electric voltage, ASME J. Appl. Mech., 82 (10) (2015) 101002.

    Article  Google Scholar 

  27. F. F. Chen and M. Y. Wang, Dynamic performance of a dielectric elastomer balloon actuator, Meccanica, 50 (11) (2015) 2731–2739.

    Article  Google Scholar 

  28. F. F. Chen, J. Zhu and M. Y. Wang, Dynamic electromechanical instability of a dielectric elastomer balloon, EPL, 112 (4) (2015) 47003.

    Article  Google Scholar 

  29. S. Ahmadi, M. Gooyers, M. Soleimani and C. Menon, Fabrication and electromechanical examination of a spherical dielectric elastomer actuator, Smart Mater. Struct., 22 (11) (2013) 115004.

    Article  Google Scholar 

  30. J. S. Plante and S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators, Int. J. Solids Struct., 43 (25–26) (2006) 7727–7751.

    Article  MATH  Google Scholar 

  31. S. X. Qu, K. Li, T. F. Li, H. Q. Jiang, M. Wang and Z. H. Li, Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field, Acta Mech. Solida Sin., 25 (5) (2012) 542–549.

    Article  Google Scholar 

  32. L. Liu, H. L. Chen, J. J. Sheng, J. S. Zhang, Y. Q. Wang and S. H. Jia, Experimental study on the dynamic response of inplane deformation of dielectric elastomer under alternating electric load, Smart Mater. Struct., 23 (2) (2014) 025037.

    Article  Google Scholar 

  33. M. Hossain, D. K. Vu and P. Steinmann, A comprehensive characterization of the electromechanically coupled properties of VHB 4910 polymer, Arch. Appl. Mech., 85 (4) (2015) 523–537.

    Article  Google Scholar 

  34. C. C. Foo, S. Q. Cai, S. J. A. Koh, S. Bauer and Z. G. Suo, Model of dissipative dielectric elastomers, J. Appl. Phys., 111 (3) (2012) 034102.

    Article  Google Scholar 

  35. T. F. Li, S. X. Qu and W. Yang, Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation, J. Appl. Phys., 112 (3) (2012) 034119.

    Article  Google Scholar 

  36. H. M. Wang, M. Lei and S. Q. Cai, Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads, J. Appl. Phys., 113 (21) (2013) 213508.

    Article  Google Scholar 

  37. Y. Y. Bai, Y. H. Jiang, B. H. Chen, C. C. Foo, Y. C. Zhou, F. Xiang, J. X. Zhou, H. Wang and Z. G. Suo, Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes, Appl. Phys. Lett., 104 (6) (2014) 062902.

    Article  Google Scholar 

  38. J. S. Zhang, H. L. Chen, J. J. Sheng, L. Liu, Y. Q. Wang and S. H. Jia, Dynamic performance of dissipative dielectric elastomers under alternating mechanical load, Appl. Phys. A, 116 (1) (2014) 59–67.

    Article  Google Scholar 

  39. M. Kollosche, G. Kofod, Z. G. Suo and J. Zhu, Temporal evolution and instability in a viscoelastic dielectric elastomer, J. Mech. Phys. Solids, 76 (2015) 47–64.

    Article  Google Scholar 

  40. C. C. Foo, S. J. A. Koh, C. Keplinger, R. Kaltseis, S. Bauer and Z. G. Suo, Performance of dissipative dielectric elastomer generators, J. Appl. Phys., 111 (9) (2012) 094107.

    Article  Google Scholar 

  41. J. S. Zhang, L. L. Tang, B. Li, Y. J. Wang and H. L. Chen, Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load, J. Appl. Phys., 117 (8) (2015) 084902.

    Article  Google Scholar 

  42. J. Zhu, T. F. Li, S. Q. Cai and Z. G. Suo, Snap-through expansion of a gas bubble in an elastomer, J. Adhesion, 87 (5) (2011) 466–481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Wang.

Additional information

Recommended by Associate Editor Jaewook Lee

H. M. Wang is currently a Professor of Engineering Mechanics at Zhejiang University (China). He received his Ph.D. in Solid Mechanics from Zhejiang University in 2003, Hangzhou, China. His research interests include soft active materials, smart materials and structures and multifield coupling analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.M. Temporal evolution in a dissipative air-coupled spherical dielectric elastomer actuator. J Mech Sci Technol 31, 4337–4343 (2017). https://doi.org/10.1007/s12206-017-0832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0832-7

Keywords

Navigation