Skip to main content

Effect of microstructure and cutting speed on machining behavior of Ti6Al4V alloy

Abstract

Machining of aerospace and biomedical grade titanium alloys has always been a challenge because of their low conductivity and elastic modulus. Different machining methods and parameters have been adopted for high precision machining of titanium alloys. Machining of titanium alloys can be improved by microstructure optimization. The present study focuses on the effect of microstructure on machinability of Ti6Al4V alloys at different cutting speeds. Samples were subjected to different annealing conditions resulting in different grain sizes and local micro-strains (misorientation). Cutting forces were significantly reduced after annealing; consequently, sub-surface residual stresses were reduced. Deformation twinning was also observed on samples annealed at a higher temperature due to larger grain size. Initial strain free grains and deformation twinning during machining reduces the cutting force at higher cutting speed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    C. Leyens and M. Peters, Titanium and Titanium Alloys(2003).

    Book  Google Scholar 

  2. [2]

    E. O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Mach. Tools Manuf., 45 (2005) 1353–1367.

    Article  Google Scholar 

  3. [3]

    S. M. Ratchev, S. M. Afazov, A. A. Becker and S. Liu, Mathematical modelling and integration of micro-scale residual stresses into axisymmetric FE models of Ti6Al4V alloy in turning, CIRP J. Manuf. Sci. Technol., 4 (2011) 80–89.

    Article  Google Scholar 

  4. [4]

    A. R. Zareena and S. C. Veldhuis, Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium, J. Mater. Process. Technol., 212 (2012) 560–570.

    Article  Google Scholar 

  5. [5]

    P. J. Arrazola, A. Garay, L. M. Iriarte, M. Armendia, S. Marya and F. Le Maître, Machinability of titanium alloys (Ti6Al4V and Ti555.3), J. Mater. Process. Technol., 209 (2009) 2223–2230.

    Article  Google Scholar 

  6. [6]

    R. R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A, 213 (1996) 103–114.

    Article  Google Scholar 

  7. [7]

    G. Bartarya and S. K. Choudhury, State of the art in hard turning, Int. J. Mach. Tools Manuf., 53 (2012) 1–14.

    Article  Google Scholar 

  8. [8]

    A. J. Makadia and J. I. Nanavati, Optimisation of machining parameters for turning operations based on response surface methodology, Meas. J. Int. Meas. Confed., 46 (2013) 1521–1529.

    Article  Google Scholar 

  9. [9]

    S. Palanisamy, S. D. McDonald and M. S. Dargusch, Effects of coolant pressure on chip formation while turning Ti6Al4V alloy, Int. J. Mac,. Tools Manuf., 49 (2009) 739–743.

    Article  Google Scholar 

  10. [10]

    R. A. R. Rashid, S. Sun, G. Wang and M. S. Dargusch, The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining, Int. J. Mach. Tools Manu., 63 (2012) 41–43.

    Article  Google Scholar 

  11. [11]

    T. Akasawa, I. Fukuda, K. Nakamura and T. Tanaka, Effect of microstructure and hardness on the machinability of medium-carbon chrome-molybdenum steel, J. Mater. Process. Techno., 153–154 (2004) 48–53.

    Article  Google Scholar 

  12. [12]

    A. Molinari, C. Musquar and G. Sutter, Adiabatic shear banding in high speed machining of Ti-6Al-4V: Experiments and modeling, Int. J. Plas., 18 (2002) 443–459.

    Article  MATH  Google Scholar 

  13. [13]

    P. Crawforth, B. Wynne, S. Turner and M. Jackson, Subsurface deformation during precision turning of a nearalpha titanium alloy, Scr. Mater., 67 (2012) 842–845.

    Article  Google Scholar 

  14. [14]

    I. S. Jawahir, E. Brinksmeier, R. M’Saoubi, D. K. Aspinwall, J. C. Outeiro, D. Meyer, D. Umbrello and A. D. Jayal, Surface integrity in material removal processes: Recent advances, CIRP Ann. -Manuf. Technol., 60 (2011) 603–626.

    Article  Google Scholar 

  15. [15]

    M. R. Shankar, B. C. Rao, S. Lee, S. Chandrasekar, A. H. King and W. D. Compton, Severe plastic deformation (SPD) of titanium at near-ambient temperature, Acta Mate., 54 (2006) 3691–3700.

    Article  Google Scholar 

  16. [16]

    W. Bin Rashid, S. Goel, X. Luo and J. M. Ritchie, The development of a surface defect machining method for hard turning processes, Wear, 302 (2013) 1124–1135.

    Article  Google Scholar 

  17. [17]

    A. Ebrahimi and M. M. Moshksar, Evaluation of machinability in turning of microalloyed and quenchedtempered steels: Tool wear, statistical analysis, chip morphology, J. Mater. Process. Technol., 209 (2009) 910–921.

    Article  Google Scholar 

  18. [18]

    M. M. Nowell and S. I. Wright, Orientation effects on indexing of electron backscatter diffraction patterns, Ultramicroscopy, 103 (2005) 41–58.

    Article  Google Scholar 

  19. [19]

    D. Kohli, R. Rakesh, V. P. Sinha, G. J. Prasad and I. Samajdar, Fabrication of simulated plate fuel elements: Defining role of stress relief annealing, J. Nucl. Mater., 447 (2014) 150–159.

    Article  Google Scholar 

  20. [20]

    S. Joshi, P. Pawar, A. Tewari and S. S. Joshi, Influence of ß phase fraction on deformation of grains in and around shear bands in machining of titanium alloys, Mater. Sci. Eng. A, 618 (2014) 71–85.

    Article  Google Scholar 

  21. [21]

    V. P. Astakhov and S. Shvets, The assessment of plastic deformation in metal cutting, J. Mater. Process. Technol., 146 (2004) 193–202.

    Article  Google Scholar 

  22. [22]

    V. P. Astakhov and S. V. Shvets, A novel approach to operating force evaluation in high strain rate metaldeforming technological processes, J. Mater. Process. Technol., 117 (2001) 226–237.

    Article  Google Scholar 

  23. [23]

    F. J. Humphreys, Grain and subgrain characterisation by electron backscatter diffraction, J. Mater. Sci., 36 (2001) 3833–3854, doi:10.1023/A:1017973432592.

    Article  Google Scholar 

  24. [24]

    S. I. Wright, M. M. Nowell, R. de Kloe, P. Camus and T. Rampton, Electron imaging with an EBSD detector, Ultramicroscopy, 148 (2015) 132–145.

    Article  Google Scholar 

  25. [25]

    S. K. Mishra, S. S. V. Tatiparti, S. M. Tiwari, R. S. Raghavan, J. E. Carsley and J. Li, Annealing response of AA5182 deformed in plane strain and equibiaxial strain paths, Philos. Mag., 93 (2013) 2613–2629.

    Article  Google Scholar 

  26. [26]

    J. D. P. Velásquez, A. Tidu, B. Bolle, P. Chevrier and J.-J. Fundenberger, Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy, Mater. Sci. Eng. A, 527 (2010) 2572–2578.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sushil Mishra.

Additional information

Recommended by Associate Editor Nam-Su Huh

Sagar V. Telrandhe is a Ph.D. candidate in Mechanical Engineering, Department of Mechanical Engineering, IIT Bombay, Powai, Mumbai, India. His Ph.D. research work deals with the study of existing problems associated with Titanium alloys machining and finding the possible microstructural modification which can improve its machining. His research areas are FEM, Machining mechanics and Microstructural characterization.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Telrandhe, S.V., Saxena, A.K. & Mishra, S. Effect of microstructure and cutting speed on machining behavior of Ti6Al4V alloy. J Mech Sci Technol 31, 2177–2184 (2017). https://doi.org/10.1007/s12206-017-0413-9

Download citation

Keywords

  • Machinability
  • Residual stresses
  • Annealing
  • Cutting forces
  • Ti6Al4V