Journal of Mechanical Science and Technology

, Volume 31, Issue 4, pp 1843–1849 | Cite as

Production of electrolyzed water for home-use based on electrodeposited macroporous platinum

Article
  • 48 Downloads

Abstract

Although electrolyzed water is a efficient disinfectant to eradicate microorganisms, it is rarely used for domestic applications. Among the various types of electrolyzed water, both slightly acidic electrolyzed water and neutral electrolyzed water are weakly acidic and contain hypochlorous acid (HOCl) which is a strong anti-bacterial agent. To avoid side effects, such as stimulation of skin, the free chlorine concentration must be < 5 mg/L. Considering that the free chlorine concentration of tap water is 4 mg/L, the range from 3 to 5 mg/L is very stable for home use. This is generally referred to as low-level hypochlorous acid fluid. Hence, we developed an electrolysis device that can directly produce low-level hypochlorous fluid. To reduce the production time, we designed a macroporous electrode with a roughness of macroscopic dimensions, which can enhance a sluggish chemical reaction. Using this principle, the macroporous electrode has shown potential applicability and the efficient bactericidal activity.

Keywords

Electrolysis device Electrolyzed water disinfection Hypochlorous acid Macroporous Pt (platinum) films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Kraft, Electrochemical water disinfection: A short review, Platinum Metals Review, 52 (3) (2008) 177–185.CrossRefGoogle Scholar
  2. [2]
    A. T. Kuhn and R. B. Lartey, Electrolytic generation “insitu” of sodium hypochlorite, Chemie Ingenieur Technik, 47 (4) (1975) 129–135.CrossRefGoogle Scholar
  3. [3]
    A. F. Adamson, B. G. Lever and W. F. Stones, The production of hypochlorite by direct electrolysis of sea water: Electrode materials and design of cells for the process, Journal of Chemical Technology and Biotechnology, 13 (11) (1963) 483–495.Google Scholar
  4. [4]
    G. Patermarakis and E. Fountoukidis, Disinfection of water by electrochemical treatment, Water Research, 24 (12) (1990) 1491–1496.CrossRefGoogle Scholar
  5. [5]
    K. Umimoto, H. Kawanishi, Y. Tachibana, N. Kawai, S. Nagata and J. Yanagida, Development of automatic controller for providing multi electrolyzed water, IFMBE Proceedings, 25 (7) (2009) 306–309.CrossRefGoogle Scholar
  6. [6]
    K. Umimoto, S. Nagata and Y. Tachibana, Development of device producing electrolyzed water for home care, Journal of Physics Conference Series, 21 (2013) 738–741.Google Scholar
  7. [7]
    A. Kraft, M. Blaschke, D. Kreysig, B. Sandt, F. Schroder and J. Rennau, Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits, Journal of Applied Electrochemistry, 29 (8) (1999) 895–902.CrossRefGoogle Scholar
  8. [8]
    N. Nakajima, T. Nakano, F. Harada, H. Taniguchi, I. Yokoyama, J. Hirose, E. Daikoku and K. Sano, Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis, Journal of Microbiological Methods, 57 (2) (2004) 163–173.CrossRefGoogle Scholar
  9. [9]
    M. E. H. Bergmann and A. S. Koparal, Studies on electrochemical disinfectant production using anodes containing RuO2, Journal of Applied Electrochemistry, 35 (12) (2005) 1321–1329.CrossRefGoogle Scholar
  10. [10]
    K. Hotta, K. Kawaguchi, K. Saito, K. Ochi and T. Nakayama, Antimicrobial activity of electrolyzed NaCl solu-tion: effect on the growth of Streptomyces spp, Actinomyatologica, 8 (2) (1994) 51–56.CrossRefGoogle Scholar
  11. [11]
    K. Umimoto, Y. Emori, H. Fujita and K. Jokei, Evaluation of strong acidic electrolyzed water for the disinfection, IEEE-EMBS EMBS Asian-Pracific Conference (2003) 360–361.Google Scholar
  12. [12]
    A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder and J. Rennau, Electrochemical water disinfection Part 1: Hypochlorite production from very dilute chloride solutions, Journal of Applied Electrochemistry, 29 (7) (1999) 859–866.CrossRefGoogle Scholar
  13. [13]
    R. F. Service, Bringing fuel cells down to earth, Science, 285 (5428) (1999) 682–685.CrossRefGoogle Scholar
  14. [14]
    H. Boo, S. Park, B. Ku, Y. Kim, J. H. Park, H. C. Kim and T. D. Chung, Ionic strength-controlled virtual area of mesoporous platinum electrode, Journal of the American Chemical Society, 126 (14) (2004) 4524–4525.CrossRefGoogle Scholar
  15. [15]
    A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299 (5613) (2003) 1688–1691.CrossRefGoogle Scholar
  16. [16]
    E. Antolini, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Materials Chemistry and Physics, 78 (3) (2003) 563–573.CrossRefGoogle Scholar
  17. [17]
    D. R. Rolison, Catalytic nanoarchitectures?the importance of nothing and the unimportance of periodicity, Science, 299 (5613) (2003) 1698–1701.CrossRefGoogle Scholar
  18. [18]
    Z. Chen, L. Xu, W. Li, M. Waje and Y. Yan, Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells, Nanotechnology, 17 (20) (2006) 5254–5259.CrossRefGoogle Scholar
  19. [19]
    N. B. Philip, R. B. Peter and A. G. Mohamed, Electrochemical deposition of macroporous platinum, palladium and cobaltfilms using polystyrene latex sphere templates, Chemical Commumicaions (2000) 1671–1672.Google Scholar
  20. [20]
    M. Eiichi and S. Masayuki, Preparation of ordered macroporous platinum metal particles, e-Journal of Surface Science and Nanotechnology, 4 (2006) 451–453.CrossRefGoogle Scholar
  21. [21]
    A. Hauch, I. K. Brodersen, M. Chen and M. B. Mogensen, Ni/YSZ electrodes structures optimized for increased electro-lysis performance and durability, Solid State Ionics, 293 (2016) 27–36.CrossRefGoogle Scholar
  22. [22]
    C. G. Buch, I. H. Cardona, E. M. Ortega, S. Mestre and V. P. Herranz, Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis, International Journal of Hydrogen Energy, 41 (2) (2016) 764–772.CrossRefGoogle Scholar
  23. [23]
    M. Li, T. Liu, L. Fan, X. Bo and L. Guo, Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogendoped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: High-performance bifunctional oxygen electrodes, Journal of Alloys and Compounds, 686 (25) (2016) 467–478.CrossRefGoogle Scholar
  24. [24]
    S. Ferdi and S. Wolfgang, Microporous and Mesoporous Materials, Advanced Material, 9 (14) (2002) 629–638.Google Scholar
  25. [25]
    J. H. Han, H. K. Boo, S. J. Park and T. D. Chung, Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor, Electrochimica Acta, 52 (4) (2006) 1788–1791.CrossRefGoogle Scholar
  26. [26]
    S. J. Park, S. Y. Lee, H. K. Boo, H. M. Kim, K. B. Kim, H. C. Kim, Y. J. Song and T. D. Chung, Three-dimensional interstitial nanovoid of nanoparticulate Pt film electroplated from reverse micelle solution, Chemistry of Material, 19 (14) (2007) 3373–3375.CrossRefGoogle Scholar
  27. [27]
    J. Xie, S. Wang, L. Aryasomayajula and V. K. Varadan, Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing, Nanotechnology, 18 (6) (2007) 65503–65512.CrossRefGoogle Scholar
  28. [28]
    H. F. Cui, J. S. Ye, X. Liu, W. D. Zhang and F. S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology, 17 (9) (2006) 2334–2339.CrossRefGoogle Scholar
  29. [29]
    S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, Journal of Electroanalytical Chemistry, 327 (12) (1992) 353–376.CrossRefGoogle Scholar
  30. [30]
    L. J. Bregoli, The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid, Electrochimica Acta, 23 (6) (1978) 489–492.CrossRefGoogle Scholar
  31. [31]
    M. Z. David, M. E. Acree, J. J. Sieth, D. J. Boxrud, G. Dobbins, R. Lynfield, S. Boyle-Vavra and R. S. Daum, Pediatric S. aureus isolate genotypes and infections from the dawn of the CA-MRSA epidemic era in Chicago, 1995-19970, Journal of Clinical Microbiology, 53 (8) (2015) 2486–2491.CrossRefGoogle Scholar
  32. [32]
    N. Goodyear, N. Brouillette, K. Tenaglia, R. Gore and J. Marshall, The effectiveness of three home products in cleaning and disinfection of Staphylococcus aureus and Escherichia coli on home environmental surfaces, Journal of Applied Microbiology, 119 (5) (2015) 1245–1252.CrossRefGoogle Scholar
  33. [33]
    K. P. Neil, G. Biggerstaff, J. K. MacDonald, E. Trees, C. Medus, K. A. Musser, S. G. Stroika, D. Zink and M. J. Sotir, A novel vehicle for transmission of Escherichia coli O157:H7 to humans: Multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009, Clinical Infectious Diseases, 54 (4) (2012) 511–518.CrossRefGoogle Scholar
  34. [34]
    A. D. Hosny, D. M. Reda, K. R. Abdelmonem and A. H. Osama, Immune response to Vi polysaccharide, heat-killed whole cells, and outer membrane protein of Salmonella typhi, The Journal of Infection in Developing Countries, 9 (6) (2015) 642–649.CrossRefGoogle Scholar
  35. [35]
    A. Kucernak and J. Jiang, Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation, Chemical Engineering Journal, 93 (1) (2003) 81–90.CrossRefGoogle Scholar
  36. [36]
    S. J. Park, H. G. Boo, Y. M. Kim, J. H. Han, H. C. Kim and T. D. Chung, pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum, Analytical Chemistry, 77 (23) (2005) 7695–7701.Google Scholar
  37. [37]
    S. J. Park, T. D. Chung and H. C. Kim, Nonenzymatic glucose detection using mesoporous platinum, Analytical Chemistry, 75 (13) (2003) 3046–3049.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Wellness Technology R&D Center, Human and Culture Convergence Technology R&D GroupKorea Institute of Industrial TechnologyAnsanKorea

Personalised recommendations