Journal of Mechanical Science and Technology

, Volume 31, Issue 4, pp 1797–1803 | Cite as

Design optimization of a drifter using the Taguchi method for efficient percussion drilling

  • Changheon Song
  • Jintai Chung
  • Jong-Hyoung Kim
  • Joo-Young Oh
Article
  • 76 Downloads

Abstract

We examine the performance optimization of a drifter used for top-hammer drilling. The performance of the drifter is determined mainly by its percussion power, which is the product of the impact rate and impact energy. We selected design parameters influencing percussion performance with the goal of optimizing the percussion power output, and verified the validity of the drifter analysis model through a comparison with laboratory test results. The design parameters that influence the drifter’s percussion performance have been selected efficiently through screening design method, and these parameters were analyzed using the Taguchi method. As a result, the robust design values against noise factor have been proposed applying the Taguchi method to selected design parameters.

Keywords

Top hammer drilling Drilling Hydraulic drifter Percussion performance Optimization Taguchi method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    The Freedonia Group Inc., World Mining Equipment (2009).Google Scholar
  2. [2]
    C. H. Song, K. B. Kwon, J. Y. Park, J. Y. Oh, D. Y. Shin and J. W. Cho, Optimum design of the internal flushing channel of a drill bit using RSM and CFD simulation, Int. J. Precis Eng. Manuf., 15 (6) (2005) 1041–1050.CrossRefGoogle Scholar
  3. [3]
    A. Giuffrida and D. Laforgia, Modelling and Simulation of a Hydraulic Breaker, Int. J. Fluid Power, 6 (2) (2005) 47–56.CrossRefGoogle Scholar
  4. [4]
    A. Ficarella, A. Giuffrida and D. Laforgia, Numerical investigation on the working cycle of a hydraulic breaker: offdesign performance and influence of design parameters, Int. J. Fluid Power, 7 (3) (2006) 41–50.CrossRefGoogle Scholar
  5. [5]
    W. A. Hustrulid and C. Fairhurst, A theoretical and experimental study of the percussive drilling of rock, Part I-Theory of percussive drilling, Int. J. Rock Mech. Min. Sci., 8 (1971) 701–711.Google Scholar
  6. [6]
    W. A. Hustrulid and C. Fairhurst, A theoretical and experimental study of the percussive drilling of rock, Part II-Forcepenetration and specific energy determination, Int. J. Rock Mech. Min. Sci., 8 (1971) 335–356.CrossRefGoogle Scholar
  7. [7]
    W. A. Hustrulid and C. Fairhurst, A theoretical and experimental study of the percussive drilling of rock, Part IIIExperimental verification of the mathematical theory, Int. J. Rock Mech. Min. Sci., 9 (1972) 417–429.CrossRefGoogle Scholar
  8. [8]
    W. A. Hustrulid and C. Fairhurst, A theoretical and experimental study of the percussive drilling of rock, Part IVApplication of the model to actual percussive drilling, Int. J. Rock Mech. Min. Sci., 9 (1972) 431–449.CrossRefGoogle Scholar
  9. [9]
    L. E. Chiang, and D. A. Elias, A 3D FEM methodology for simulating the impact in rock-drilling hammers, Int. J. Rock Mech. Min. Sci., 45 (5) (2008) 701–711.CrossRefGoogle Scholar
  10. [10]
    B. Changgen, Q. Yegao, C. Zhiqiang and L. Baolin, Numerical simulation of impact on pneumatic DTH hammer percussive drilling, J. Earth Sci., 36 (5) (2009) 868–878.Google Scholar
  11. [11]
    J. Y. Oh, G. H. Lee, H. S. Kang and C. S. Song, Modeling and performance analysis of rock drill drifters for rock stiffess, Int. J. Prec. Eng. Manuf., 13 (12) (2012) 2187–2193.CrossRefGoogle Scholar
  12. [12]
    D. Y. Shin and C. H. Son, Performance optimization of Down the-Hole hammer using Taguchi method, Transactions of the Korean Society of Mechanical Engineers A, 36 (1) (2012) 109–116.MathSciNetCrossRefGoogle Scholar
  13. [13]
    C. H. Song, K. B. Kwon, M. G. Cho, J. Y. Oh, D. Y. Shin and J. W. Cho, Development of lab-scale rock drill apparatus for testing performance of a drill bit, Int. J. Precis. Eng. Manuf., 16 (7) (2015) 405–1414.Google Scholar
  14. [14]
    K. B. Kwon, C. H. Song, J. Y. Park, J. Y. Oh, J. W. Lee and J. W. Cho, Evaluation of drilling efficiency by percussion testing of a drill bit with new button arrangement, Int. J. Precis. Eng. Manuf., 15 (6) (2014) 1063–1068.CrossRefGoogle Scholar
  15. [15]
    J. Y. Oh, J. Y. Park, J. W. Cho, H. S. Kang and G. H. Lee, Influence of design parameter on the percussion performance of a hydraulic percussion drifter, Proc. of the KSPE Autumn Conference, Korea (2013) 981–982.Google Scholar
  16. [16]
    P. Subra and P. Jestin, Screening design of experiment (DOE) applied to supercritical antisolvent process, Ind. Eng. Chem. Res., 39 (11) (2000) 4178–4184.CrossRefGoogle Scholar
  17. [17]
    J. S. Kwak and M. K. Ha, Optimization of grinding conditions and prediction of surface roughness using Taguchi experimental design, J. Kor. Soc. Prec. Eng., 21 (7) (2004) 37–45.Google Scholar
  18. [18]
    J. Y. Oh., C. H. Song, D. J. Kim, J. G. Kim, J. Y. Park and J. W. Cho, Numerical investigation of performance of hydraulic percussion drifter, Int. J. Precis. Eng. Manuf., 17 (7) (2016) 879–885.CrossRefGoogle Scholar
  19. [19]
    Minitab Inc., Minitab Statguide (2005).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Changheon Song
    • 1
  • Jintai Chung
    • 1
  • Jong-Hyoung Kim
    • 2
  • Joo-Young Oh
    • 3
  1. 1.Department of Mechanical EngineeringHanyang UniversityGyeonggi-doKorea
  2. 2.Ultimate Manufacturing Technology GroupKorea Institute of Industrial TechnologyYuga-myeon, Dalseong-gun, DaeguKorea
  3. 3.Construction Equipment R&D GroupKorea Institute of Industrial TechnologyYuga-myeon, Dalseong-gun, DaeguKorea

Personalised recommendations