Journal of Mechanical Science and Technology

, Volume 31, Issue 4, pp 1621–1627 | Cite as

Optimization of mixing process and effect of multi-walled carbon nanotubes on tensile properties of unsaturated polyester resin in composite materials

Article

Abstract

Multi-walled carbon nanotubes (MWCNTs) were mixed with Unsaturated polyester resin (UPR) using the stir method at high temperatures. The mixing temperature and hardener ratio were optimized based on compression properties and the exothermic temperature. In the experiment, 60 °C and 1 wt.% of Methyl ethyl ketone peroxide (MEKP) were chosen for the mixing condition and catalyst concentration, respectively. MWCNTs with different weight fractions (0.05, 0.1, 0.2 and 0.3 wt.%) were dispersed to investigate the effect of MWCNTs on tensile properties of the UPR, and it was found that 0.1 wt.% of MWCNTs showed the best performance in this range of fiber weight fraction due to a higher strength (42.14 %), modulus (14.33 %) and fracture strain (37.17 %) than pure UPR. The state of dispersion and arrangement of fibers were examined by a Field emission Scanning electron microscope (FE-SEM) according to fracture surfaces. Similarly, the FE-SEM also showed better results with 0.1 wt.% of MWCNTs mixed in the UPR.

Keywords

Multi-walled carbon nanotubes Unsaturated polyester resin Mixing temperature Exothermic temperature Curing time Compressive properties Tensile properties Dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56–58.CrossRefGoogle Scholar
  2. [2]
    A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology, 62 (2002) 1993–1998.CrossRefGoogle Scholar
  3. [3]
    M.-K. Yeh, N.-H. Tai and J.-H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, 44 (2006) 1–9.CrossRefGoogle Scholar
  4. [4]
    A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi and A. Mohajeri, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Materials & Design, 31 (2010) 4202–4208.CrossRefGoogle Scholar
  5. [5]
    M. M. Shokrieh, A. Saeedi and M. Chitsazzadeh, Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites, Journal of Nanostructure in Chemistry, 3 (2013) 1–5.CrossRefGoogle Scholar
  6. [6]
    I. Petrova, E. Ivanov, R. Kotsilkova, Y. Tsekov and V. Angelov, Applied study on mechanics of nanocomposites with carbon nanofillers, Journal of Theoretical and Applied Mechanics, 43 (2013) 67–76.CrossRefGoogle Scholar
  7. [7]
    P. Guo, X. Chen, X. Gao, H. Song and H. Shen, Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites, Composites Science and Technology, 67 (2007) 3331–3337.CrossRefGoogle Scholar
  8. [8]
    X. L. Xie, Y. W. Mai and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports, 49 (2005) 89–112.CrossRefGoogle Scholar
  9. [9]
    Y. S. Song and J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocom-posites, Carbon, 43 (2005) 1378–1385.CrossRefGoogle Scholar
  10. [10]
    J. Du, J. Bai and H. Cheng, The present status and key problems of carbon nanotube based polymer composites, Express Polymer Letters, 1 (2007) 253–273.CrossRefGoogle Scholar
  11. [11]
    P.-C. Ma, N. A. Siddiqui, G. Marom and J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1345–1367.CrossRefGoogle Scholar
  12. [12]
    S.-H. Hwang, D. S. Bang, K. H. Yoon and Y.-B. Park, Smart materials and structures based on carbon nanotube composites, INTECH Open Access Publisher (2011).CrossRefGoogle Scholar
  13. [13]
    D. Qian, E. C. Dickey, R. Andrews and T. Rantell, Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites, Applied Physics Letters, 76 (2000) 2868–2870.CrossRefGoogle Scholar
  14. [14]
    A. Battisti, A. A. Skordos and I. K. Partridge, Monitoring dispersion of carbon nanotubes in a thermosetting polyester resin, Composites Science and Technology, 69 (2009) 1516–1520.CrossRefGoogle Scholar
  15. [15]
    A. T. Seyhan, F. H. Gojny, M. Tanoglu and K. Schulte, Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites, European Polymer Journal, 43 (2007) 374–379.CrossRefGoogle Scholar
  16. [16]
    J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40 (1999) 5967–5971.CrossRefGoogle Scholar
  17. [17]
    J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang and J. K. Kim, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Advanced Functional Materials, 17 (2007) 3207–3215.CrossRefGoogle Scholar
  18. [18]
    T. Ramanathan et al., Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology, 3 (2008) 327–331.CrossRefGoogle Scholar
  19. [19]
    E. E. Ureña-Benavides, M. J. Kayatin and V. A. Davis, Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin, Macromolecules, 46 (2013) 1642–1650.CrossRefGoogle Scholar
  20. [20]
    N. G. Sahoo, S. Rana, J. W. Cho, L. Li and S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Progress in Polymer Science, 35 (2010) 837–867.CrossRefGoogle Scholar
  21. [21]
    F. Bensadoun, N. Kchit, C. Billotte, F. Trochu and E. Ruiz, A comparative study of dispersion techniques for nanocomposite made with nanoclays and an unsaturated polyester resin, Journal of Nanomaterials, 2011 (2011) 6.CrossRefGoogle Scholar
  22. [22]
    M. D. H. Beg, A. M. Alam, R. M. Yunus and M. F. Mina, Improvement of interaction between pre-dispersed multiwalled carbon nanotubes and unsaturated polyester resin, Journal of Nanoparticle Research, 17 (2015) 1–13.CrossRefGoogle Scholar
  23. [23]
    A. K. M. Alam, M. D. H. Beg and R. M. Yunus, Micro structure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites, Polymer Composites (2016).Google Scholar
  24. [24]
    ASTM D638-03, Standard test method for tensile properties of plastics, ASTM international, West Conshohocken, PA (2003).Google Scholar
  25. [25]
    R. F. Toorkey, K. C. Rajanna and P. K. S. Prakash, Curing of unsaturated polyester: Network formation, Journal of Chemical Education, 73 (1996) 372–373.CrossRefGoogle Scholar
  26. [26]
    J. R. M. d'Almeida and S. N. Monteiro, The influence of the amount of hardener on the tensile mechanical behavior of an epoxy system, Polymers for Advanced Technologies, 9 (1998) 216–221.CrossRefGoogle Scholar
  27. [27]
    Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang and D. L. Zhang, Tensile tests of ropes of very long aligned multiwall carbon nanotubes, Applied Physics Letters, 74 (1999) 3152–3154.CrossRefGoogle Scholar
  28. [28]
    M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287 (2000) 637–640.CrossRefGoogle Scholar
  29. [29]
    A. Haque and A. Ramasetty, Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites, Composite Structures, 71 (2005) 68–77.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations