Skip to main content
Log in

Validation of magnetic resonance velocimetry for mean velocity measurements of turbulent flows in a circular pipe

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique that has been utilized for medical applications. Recently, MRV has been used to visualize engineering flows, but most engineers are still unfamiliar with the technique. In this paper, we introduce the basic principles and experimental configurations of MRV in detail and evaluate the accuracy of MRV applied to measure the mean velocity fields of turbulent flows in a circular pipe. A Philips Achieva 3.0 T Tx MRI scanner is used to provide a magnetic field and acquire resonance signals for flow visualization. Fully developed turbulent flows with Reynolds numbers of 6800, 9900 and 19400 were measured, and the axial mean velocity vectors were obtained with a spatial resolution of 0.5 mm for the three directions. Results show that the mean velocity profiles are in good agreement with reference data sets when properly scaled in both the inner and outer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. de Rochefort, X. Maître, R. Fodil, L. Vial, B. Louis, D. Isabey, C. Croce, L. Darrasse, G. Apiou and G. Caillibotte, Phase-contrast velocimetry with hyperpolarized 3He for in vitro and in vivo characterization of airflow, Magnetic Resonance in Medicine, 55 (6) (2006) 1318–1325.

    Article  Google Scholar 

  2. B. Newling, C. C. Poirier, Y. Zhi, J. A. Rioux, A. J. Coristine, D. Roach and B. J. Balcom, Velocity imaging of highly turbulent gas flow, Physical Review Letters, 93 (15) (2004) 154503.

    Article  Google Scholar 

  3. C. L. Dumoulin and H. Hart Jr., Magnetic resonance angiography, Radiology, 161 (3) (1986) 717–720.

    Article  Google Scholar 

  4. N. J. Pelc, M. A. Bernstein, A. Shimakawa and G. H. Glover, Encoding strategies for three-direction phase-contrast MR imaging of flow, Journal of Magnetic Resonance Imaging, 1 (4) (1991) 405–413.

    Article  Google Scholar 

  5. T. J. Mosher and M. B. Smith, A DANTE tagging sequence for the evaluation of translational sample motion, Magnetic Resonance in Medicine, 15 (2) (1990) 334–339.

    Article  Google Scholar 

  6. M. Markl, A. Frydrychowicz, S. Kozerke, M. Hope and O. Wieben, 4D flow MRI, Journal of Magnetic Resonance Imaging, 36 (5) (2012) 1015–1036.

    Article  Google Scholar 

  7. S. Chang, C. Elkins, M. Alley, J. Eaton and S. Monismitha, Flow inside a coral colony measured using magnetic resonance velocimetry, Limnology and Oceanography, 54 (5) (2009) 1819–1827.

    Article  Google Scholar 

  8. C. Elkins, M. Markl, N. Pelc and J. Eaton, 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows, Experiments in Fluids, 34 (4) (2003) 494–503.

    Article  Google Scholar 

  9. M. J. Benson, C. J. Elkins and J. K. Eaton, Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge, Experiments in Fluids, 51 (2) (2011) 443–455.

    Article  Google Scholar 

  10. C. J. Elkins and M. T. Alley, Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion, Experiments in Fluids, 43 (6) (2007) 823–858.

    Article  Google Scholar 

  11. D. Freudenhammer, E. Baum, B. Peterson, B. Böhm, B. Jung and S. Grundmann, Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry, Experiments in Fluids, 55 (5) (2014) 1–18.

    Article  Google Scholar 

  12. S. Nordmeyer, E. Riesenkampff, G. Crelier, A. Khasheei, B. Schnackenburg, F. Berger and T. Kuehne, Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study, Journal of Magnetic Resonance Imaging, 32 (3) (2010) 677–683.

    Article  Google Scholar 

  13. M. Carlsson, J. Töger, M. Kanski, K. M. Bloch, F. Ståhlberg, E. Heiberg and H. Arheden, Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or kt BLAST: head to head comparison and validation at 1.5 T and 3 T, Journal of Cardiovascular Magnetic Resonance, 13 (1) (2011) 1–7.

    Article  Google Scholar 

  14. D. I. Hollnagel, P. E. Summers, S. S. Kollias and D. Poulikakos, Laser Doppler velocimetry (LDV) and 3D phase-contrast magnetic resonance angiography (PC-MRA) velocity measurements: Validation in an anatomically accurate cerebral artery aneurysm model with steady flow, Journal of Magnetic Resonance Imaging, 26 (6) (2007) 1493–1505.

    Article  Google Scholar 

  15. I. Khodarahmi, M. Shakeri, M. Kotys-Traughber, S. Fischer, M. K. Sharp and A. A. Amini, In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics, Journal of Magnetic Resonance Imaging, 39 (6) (2014) 1477–1485.

    Article  Google Scholar 

  16. C. Baltes, S. Kozerke, M. S. Hansen, K. P. Pruessmann, J. Tsao and P. Boesiger, Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE, Magnetic Resonance in Medicine, 54 (6) (2005) 1430–1438.

    Article  Google Scholar 

  17. R. E. Clough, M. Waltham, D. Giese, P. R. Taylor and T. Schaeffter, A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging, Journal of Vascular Surgery, 55 (4) (2012) 914–923.

    Article  Google Scholar 

  18. T. Ebbers and G. Farnebäck, Improving computation of cardiovascular relative pressure fields from velocity MRI, Journal of Magnetic Resonance Imaging, 30 (1) (2009) 54–61.

    Article  Google Scholar 

  19. D. Giese, M. Haeberlin, C. Barmet, K. P. Pruessmann, T. Schaeffter and S. Kozerke, Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring, Magnetic Resonance in Medicine, 67 (5) (2012) 1294–1302.

    Article  Google Scholar 

  20. T. A. Maugans, C. Farley, M. Altaye, J. Leach and K. M. Cecil, Pediatric sports-related concussion produces cerebral blood flow alterations, Pediatrics, 129 (1) (2012) 28–37.

    Article  Google Scholar 

  21. P. Ooij, W. V. Potters, A. Guédon, J. J. Schneiders, H. A. Marquering, C. B. Majoie, E. van Bavel and A. J. Nederveen, Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm, Journal of Magnetic Resonance Imaging, 38 (4) (2013) 876–884.

    Article  Google Scholar 

  22. A. C. Stamm, C. L. Wright, M. V. Knopp, P. Schmalbrock and J. T. Heverhagen, Phase contrast and time-of-flight magnetic resonance angiography of the intracerebral arteries at 1.5, 3 and 7 T, Magnetic Resonance Imaging, 31 (4) (2013) 545–549.

    Article  Google Scholar 

  23. P. Van Ooij, J. Zwanenburg, F. Visser, C. Majoie, E. Vanbavel, J. Hendrikse and A. Nederveen, Quantification and visualization of flow in the Circle of Willis: Time-resolved three-dimensional phase contrast MRI at 7 T compared with 3 T, Magnetic Resonance in Medicine, 69 (3) (2013) 868–876.

    Article  Google Scholar 

  24. F. Bloch, Nuclear induction, Physical Review, 70 (7-8) (1946) 460.

    Article  Google Scholar 

  25. E. M. Purcell, H. Torrey and R. V. Pound, Resonance absorption by nuclear magnetic moments in a solid, Physical Review, 69 (1-2) (1946) 37.

    Article  Google Scholar 

  26. R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson and R. Venkatesan, Magnetic resonance imaging: physical principles and sequence design, John Wiley & Sons (2014).

    Book  Google Scholar 

  27. M. V. Zagarola and A. J. Smits, Mean-flow scaling of turbulent pipe flow, Journal of Fluid Mechanics, 373 (1998) 33–79.

    Article  MATH  Google Scholar 

  28. C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas and J. C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, Image Processing, IEEE Transactions on, 20 (7) (2011) 2007–2016.

    MathSciNet  Google Scholar 

  29. J. Eggels, F. Unger, M. Weiss, J. Westerweel, R. Adrian, R. Friedrich and F. Nieuwstadt, Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment, Journal of Fluid Mechanics, 268 (1994) 175–210.

    Article  Google Scholar 

  30. C. Wagner, T. Hüttl and R. Friedrich, Low-Reynoldsnumber effects derived from direct numerical simulations of turbulent pipe flow, Computers & Fluids, 30 (5) (2001) 581–590.

    Article  MATH  Google Scholar 

  31. J. Den Toonder and F. Nieuwstadt, Reynolds number effects in a turbulent pipe flow for low to moderate Re, Phys-ics of Fluids (1994-present), 9 (11) (1997) 3398–3409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Song.

Additional information

Recommended by Associate Editor Hyoung-gwon Choi

Jeesoo Lee is a Ph.D. candidate at the Department of Mechanical Convergence Engineering in Hanyang University, Seoul, Korea. His research interests are experimental flow visualization and analysis.

Simon Song is a Professor of Department of Mechanical Engineering at Hanyang University, Seoul, Korea. He received Ph.D. at Stanford University in 2002. His research interests include microfluidics, 3D flow visualization and computational fluid dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Ko, S., Cho, JH. et al. Validation of magnetic resonance velocimetry for mean velocity measurements of turbulent flows in a circular pipe. J Mech Sci Technol 31, 1275–1282 (2017). https://doi.org/10.1007/s12206-017-0226-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0226-x

Keywords

Navigation