Skip to main content
Log in

Analysis of wave reflection of a stenotic vessel blood pressure wave using the lattice Boltzmann method and impedance boundary condition

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Pressure wave produced by a stenotic vessel was analyzed in terms of the stiffness index, augmentation index and reflection index. An understanding of blood pressure wave reflection is key to developing non-invasive and easy-to-use diagnostic methods. The purpose of this study was to use computational fluid dynamics to analyze blood pressure waves and understand blood pressure wave reflections in stenotic vessels. The lattice Boltzmann method was used with the impedance boundary condition for the blood pressure waves. Variations in blood pressure wave parameters according to different degrees of stenosis were analyzed, in addition to fluid dynamic properties, including flow energy loss. We found that blood pressure wave reflection is related to flow energy loss from stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chen, C. Wen, G. Tao and M. Bi, Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities, Annals of Biomedical Engineering, 40 (2012) 871–882.

    Article  Google Scholar 

  2. P. G. Yock and R. L. Popp, Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation, Circulation Journal, 70 (1984) 657–662.

    Article  Google Scholar 

  3. H. S. Shin, C. Lee and M. Lee, Adaptive threshold method for the peak detection of photoplethysmographic waveform, Computers in Biology and Medicine, 39 (2009) 1145–1152.

    Article  Google Scholar 

  4. S. Lu, H. Zhao, K. Ju, K. Shin, M. Lee, K. Shelley and K. H. Chon, Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?, Journal of Clinical Monitoring and Computing, 22 (2008) 23–29.

    Article  Google Scholar 

  5. L. Pestritu, A. Todiruta, M. Goga and N. Goga, Method for measuring the heart rate through fingertip using a low-end video camera and its application in self care, Bioinformatics and Bioengineering 2013 IEEE 13th International Conference (2013).

    Google Scholar 

  6. M. F. O’Rourke, C. O’Brien and T. Weber, Arterial stiffness, wave reflection, wave amplification: Basic concepts, Principles of Measurement and Analysis in Humans, Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases (2014).

    Google Scholar 

  7. M. Elgendi, On the analysis of fingertip photoplethysmogram signals, Current Cardiology Reviews, 8 (2012) 14–25.

    Article  Google Scholar 

  8. Y. Matsui, K. Kario, J. Ishikawa, K. Eguchi, S. Hoshide and K. Shimada, Reproducibility of arterial stiffness indices (pulse wave velocity and augmentation index) simultaneously assessed by automated pulse wave analysis and their associated risk factors in essential hypertensive patients, Hypertension Research, 27 (2004) 851–857.

    Article  Google Scholar 

  9. G. Qureshi, J. M. Lazar, H. Javaid, M. Weber and L. Salciccioli, Self-measured (blood pressure) arterial stiffness index: A promising new measure of arterial stiffness, Journal of the American Society of Hypertension, 1 (2007) 347–352.

    Article  Google Scholar 

  10. T. Hirai, S. Sasayama, T. Kawasaki and S. Yagi, Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis, Circulation, 80 (1989) 78–86.

    Article  Google Scholar 

  11. G. Leoncini, E. Ratto, F. Viazzi, V. Vaccaro, A. Parodi, V. Falqui, N. Conti, C. Tomolillo, G. Deferrari and R. Pontremoli, Increased ambulatory arterial stiffness index is associated with target organ damage in primary hypertension, Hypertension, 48 (2006) 397–403.

    Article  Google Scholar 

  12. J. N. Adams, M. Brooks, T. W. Redpath, F. W. Smith, J. Dean, J. Gray, S. Walton and R. J. Trent, Aortic distensibility and stiffness index measured by magnetic resonance imaging in patients with Marfan's syndrome, British Heart Journal, 73 (1995) 265–269.

    Article  Google Scholar 

  13. S. Laurent and P. Boutouyrie, Recent advances in arterial stiffness and wave reflection in human hypertension, Hypertension, 49 (2007) 1202–1206.

    Article  Google Scholar 

  14. I. B. Wilkinson, K. Prasad, I. R. Hall, A. Thomas, H. Mac-Callum, D. J. Webb, M. P. Frenneaux and J. R. Cockcroft, Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia, Journal of the American College of Cardiology, 39 (2002) 1005–1011.

    Article  Google Scholar 

  15. I. B. Wilkinson, H. MacCallum, D. F. Rooijmans, G. D. Murray, J. R. Cockcroft, J. A. McKnight and D. J. Webb, Increased augmentation index and systolic stress in type 1 diabetes mellitus, Monthly Journal of Association of Physicians, 93 (2000) 441–448.

    Article  Google Scholar 

  16. G. Van den Bos, N. Westerhof and O. Randall, Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs, Circulation Research, 51 (1982) 479–485.

    Article  Google Scholar 

  17. H. Senzaki, C. H. Chen, H. Ishido, S. Masutani, T. Matsunaga, M. Taketazu, T. Kobayashi, N. Sasaki, S. Kyo and Y. Yokote, Arterial hemodynamics in patients after Kawasaki disease, Circulation, 111 (2005) 2119–2125.

    Article  Google Scholar 

  18. C. H. Manisty, A. Zambanini, K. H. Parker, J. E. Davies, D. P. Francis, J. Mayet, A. M. T. Simon and A. D. Hughes, Differences in the magnitude of wave reflection account for differential effects of amlodipine-versus atenolol-based regimens on central blood pressure: an Anglo-Scandinavian Cardiac Outcome Trial substudy, Hypertension, 54 (2009) 724–730.

    Article  Google Scholar 

  19. H. Farhat, J. S. Lee and S. Kondaraju, Accelerated Lattice Boltzmann Model for Colloidal Suspensions, Springer, London (2014) 1–158.

    Book  Google Scholar 

  20. J. Park, T. Kim, S. Y. Baek and K. Lee, An algorithm for estimating surface normal from its boundary curves, Journal of Computational Design and Engineering, 2 (2014) 67–72.

    Article  Google Scholar 

  21. K. Ko and T. Sakkalis, Orthogonal projection of points in CAD/CAM applications: an overview, Journal of Computational Design and Engineering, 1 (2014) 116–127.

    Article  Google Scholar 

  22. G. F. Mitchell, P. R. Conlin, M. E. Dunlap, Y. Lacourciere, J. M. Arnold, R. I. Ogilvie, J. Neutel, J. L. Izzo A Jr. and M. A. Pfeffer, Aortic diameter, wall stiffness, and wave reflection in systolic hypertension, Hypertension, 51 (2008) 105–111.

    Article  Google Scholar 

  23. B. A. Kingwell, T. K. Waddell, T. L. Medley, J. D. Cameron and A. M. Dart, Large artery stiffness predicts ischemic threshold in patients with coronary artery disease, Journal of American College of Cardiology, 40 (2002) 773–779.

    Article  Google Scholar 

  24. I. S. Mackenzie, I. B. Wilkinson and J. R. Cockcroft, Assessment of arterial stiffness in clinical practice, Monthly Journal of Association of Physicians, 95 (2002) 67–74.

    Article  Google Scholar 

  25. L. Itu, C. Suciu, A. Postelnicu and F. Moldoveanu, Analysis of outflow boundary condition implementations for 1D blood flow models, E-Health and Bioengineering Conference (2011).

    Google Scholar 

  26. J. Y. Moon, D. C. Suh, Y. S. Lee, Y. W. Kim and J. S. Lee, Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling, Neurointervention, 9 (2014) 1–8.

    Article  Google Scholar 

  27. Y. W. Kim, J. Y. Moon, K. R. Cho and J. S. Lee, Impedance boundary condition analysis of aging-induced wave reflections in blood flow, Korea-Australia Rheology Journal, 25 (2013) 217–225.

    Article  Google Scholar 

  28. J. R. Womersley, An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, Wright Air Development Center (1988) 1–115.

    Google Scholar 

  29. H. Atabek, A Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube, Biophysics Journal, 8 (1968) 626.

    Article  Google Scholar 

  30. T. J. Pedley and X. Luo, Fluid mechanics of large blood vessels, Cambridge University Press: Cambridge (1995) 1–464.

    Google Scholar 

  31. G. F. Mitchell, H. Parise, E. J. Benjamin, M. G. Larson, M. J. Keyes, J. A. Vita, R. S. Vasan and D. Levy, Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study, Hypertension, 43 (2004) 1239–1245.

    Article  Google Scholar 

  32. A. E. Donald, M. Charakida, T. J. Cole, P. Friberg, P. J. Chowienczyk, S. C. Millasseau, J. E. Deanfield and J. P. Halcox, Non-invasive assessment of endothelial function: which technique?, Journal of American College of Cardiology, 48 (2006) 1846–1850.

    Article  Google Scholar 

  33. H. Tomiyama and A. Yamashina, Non-invasive vascular function tests: their pathophysiological background and clinical application, Circulation Journal, 74 (2010) 24–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Sang Lee.

Additional information

Recommended by Associate Editor Jaeseon Lee

Joon Sang Lee is an Associate Professor of School of Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea. He received his doctor degree in Mechanical Engineering from Iowa State University. His research interests is mainly on computational fluid dynamics, including biomechanics and hemodynamics and multi-scale fluid dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.W., Kim, Y.H. & Lee, J.S. Analysis of wave reflection of a stenotic vessel blood pressure wave using the lattice Boltzmann method and impedance boundary condition. J Mech Sci Technol 30, 3719–3728 (2016). https://doi.org/10.1007/s12206-016-0734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0734-0

Keywords

Navigation