Journal of Mechanical Science and Technology

, Volume 30, Issue 6, pp 2891–2897 | Cite as

A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

  • Yongcheol Kim
  • Ducmanh Ta
  • Moonki Jung
  • Seungbum Koo
Article
  • 191 Downloads

Abstract

The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model’s prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

Keywords

Joint kinetics Lumbar spine Musculoskeletal model Thoracic spine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. M. Panjabi, Three-dimensional mathematical model of the human spine structure, Journal of Biomechanics, 6 (6) (1973) 671–680.CrossRefGoogle Scholar
  2. [2]
    M. M. Panjabi, Biomechanical evaluation of spinal fixation devices: I. A conceptual framework, Spine, 13 (10) (1988) 1129–1134.CrossRefGoogle Scholar
  3. [3]
    H. J. Wilke, P. Neef, M. Caimi, T. Hoogland and L. E. Claes, New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 24 (8) (1999) 755–762.CrossRefGoogle Scholar
  4. [4]
    K. Sato, S. Kikuchi and T. Yonezawa, In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems, Spine, 24 (23) (1999) 2468.CrossRefGoogle Scholar
  5. [5]
    A. Rohlmann, F. Graichen, R. Kayser, A. Bender and G. Bergmann, Loads on a telemeterized vertebral body replacement measured in two patients, Spine, 33 (11) (2008) 1170–1179.CrossRefGoogle Scholar
  6. [6]
    M. De Zee, L. Hansen, C. Wong, J. Rasmussen and E. B. Simonsen, A generic detailed rigid-body lumbar spine model, Journal of Biomechanics, 40 (6) (2007) 1219–1227.CrossRefGoogle Scholar
  7. [7]
    S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John and D. G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement, Biomedical Engineering, IEEE Transactions on, 54 (11) (2007) 1940–1950.Google Scholar
  8. [8]
    M. Christophy, N. A. F. Senan, J. C. Lotz and O. M. O’Reilly, A musculoskeletal model for the lumbar spine, Biomechanics and Modeling in Mechanobiology, 11 (1-2) (2012) 19–34.CrossRefGoogle Scholar
  9. [9]
    K. S. Han, T. Zander, W. R. Taylor and A. Rohlmann, An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces, Medical Engineering & Physics, 34 (6) (2012) 709–716.CrossRefGoogle Scholar
  10. [10]
    K. S. Han, A. Rohlmann, T. Zander and W. R. Taylor, Lumbar spinal loads vary with body height and weight, Medical Engineering & Physics, 35 (7) (2013) 969–977.CrossRefGoogle Scholar
  11. [11]
    M. Dreischarf, T. Zander, A. Shirazi-Adl, C. M. Puttlitz, C. J. Adam, C. S. Chen and H. Schmidt, Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together, Journal of Biomechanics, 47 (8) (2014) 1757–1766.CrossRefGoogle Scholar
  12. [12]
    M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma and M. de Zee, Analysis of musculoskeletal systems in the anybody modeling system, Simulation Modelling Practice and Theory, 14 (8) (2006) 1100–1111.CrossRefGoogle Scholar
  13. [13]
    A. A. White and M. M. Panjabi, Clinical Biomechanics of the Spine, Phnoiladelphia: Lippincott (1990).Google Scholar
  14. [14]
    M. Nissan and I. Gilad, Dimensions of human lumbar vertebrae in the sagittal plane, Journal of Biomechanics, 19 (9) (1986) 753–758.CrossRefGoogle Scholar
  15. [15]
    D. A. Winter, Biomechanics and motor control of human movement, John Wiley & Sons. (1986).Google Scholar
  16. [16]
    T. X. Qiu, E. C. Teo, K. K. Lee, H. W. Ng and K. Yang, Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes, Spine, 28 (24) (2003) 2694–2699.CrossRefGoogle Scholar
  17. [17]
    L. Hansen, M. De Zee, J. Rasmussen, T. B. Andersen, C. Wong and E. B. Simonsen, Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling, Spine, 31 (17) (2006) 1888–1899.CrossRefGoogle Scholar
  18. [18]
    R. A. Brand, D. R. Pedersen and J. A. Friederich, The sensitivity of muscle force predictions to changes in physiologic cross-sectional area, Journal of Biomechanics, 19 (8) (1986) 589–596.CrossRefGoogle Scholar
  19. [19]
    K. A. Poelstra, M. F. Eijkelkamp and A. G. Veldhuizen, The geometry of the human paraspinal muscles with the aid of three-dimensional computed tomography scans and 3-Space Isotrak, Spine, 25 (17) (2000) 2176–2179.CrossRefGoogle Scholar
  20. [20]
    T. W. Lu and J. J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints, Journal of Biomechanics, 32 (2) (1999) 129–134.CrossRefGoogle Scholar
  21. [21]
    M. S. Andersen, M. Damsgaard and J. Rasmussen, Kinematic analysis of over-determinate biomechanical systems, Computer Methods in Biomechanics and Biomedical Engineering, 12 (4) (2009) 371–384.CrossRefGoogle Scholar
  22. [22]
    B. M. Van Bolhuis and C. C. A. M. Gielen, A comparison of models explaining muscle activation patterns for isometric contractions, Biological Cybernetics, 81 (3) (1999) 249–261.CrossRefMATHGoogle Scholar
  23. [23]
    Y. Jung, M. Jung, K. Lee and S. Koo, Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking, Journal of Biomechanics, 47 (11) (2014) 2693–2699.CrossRefGoogle Scholar
  24. [24]
    J. Rassmussen, S. Carbes and S. T. Gomma, Validation of a biomechanical model of the lumbar spine, International Society of Biomechanics 2009 Congress XXII, Cape Town, South Africa (2009).Google Scholar
  25. [25]
    L. B. Brasiliense, B. C. Lazaro, P. M. Reyes, S. Dogan, N. Theodore and N. R. Crawford, Biomechanical contribution of the rib cage to thoracic stability, Spine, 36 (26) (2011) E1686–E1693.CrossRefGoogle Scholar
  26. [26]
    S. Iyer, B. A. Christiansen, B. J. Roberts, M. J. Valentine, R. K. Manoharan and M. L. Bouxsein, A biomechanical model for estimating loads on thoracic and lumbar vertebrae, Clinical Biomechanics, 25 (9) (2010) 853–858.CrossRefGoogle Scholar
  27. [27]
    B. Beyer, V. Sholukha, P. M. Dugailly, M. Rooze, F. Moiseev, V. Feipel and S. V. S. Jan, In vivo thorax 3D modelling from costovertebral joint complex kinematics, Clinical Biomechanics, 29 (4) (2014) 434–438.CrossRefGoogle Scholar
  28. [28]
    K. T. Huynh, I. Gibson, B. N. Jagdish and W. F. Lu, Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation, Computer Methods in Biomechanics and Biomedical Engineering, 18 (2) (2015) 175–184.CrossRefGoogle Scholar
  29. [29]
    A. Andre, S. Carbes and J. L. Ruiz, Development of a computer model of the thoracic human spine with an aim to investigate loss of stability in scoliosis, Master's Thesis, Aalborg University, Denmark (2006).Google Scholar
  30. [30]
    J. M. Willems, G. A. Jull and J. F. Ng, An in vivo study of the primary and coupled rotations of the thoracic spine, Clinical Biomechanics, 11 (6) (1996) 311–316.CrossRefGoogle Scholar
  31. [31]
    D. J. Polga, B. P. Beaubien, P. M. Kallemeier, K. P. Schellhas, W. D. Lew, G. R. Buttermann and K. B. Wood, Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs, Spine, 29 (12) (2004) 1320–1324.CrossRefGoogle Scholar
  32. [32]
    C. Cooper, E. J. Atkinson, W. Michael O'Fallon and J. L. Melton, Incidence of clinically diagnosed vertebral fractures: A population-based study in rochester, minnesota, 1985-1989, Journal of Bone and Mineral Research, 7 (2) (1992) 221–227.CrossRefGoogle Scholar
  33. [33]
    M. E. Lund, M. de Zee, M. S. Andersen and J. Rasmussen, On validation of multibody musculoskeletal models, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226 (2) (2012) 82–94.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yongcheol Kim
    • 1
  • Ducmanh Ta
    • 1
  • Moonki Jung
    • 2
  • Seungbum Koo
    • 1
  1. 1.School of Mechanical EngineeringChung-Ang UniversitySeoulKorea
  2. 2.AnyBody Technology A/SAalborgDenmark

Personalised recommendations