Journal of Mechanical Science and Technology

, Volume 30, Issue 3, pp 1271–1279 | Cite as

Thermophysical properties of ethylene glycol-water mixture containing silver nanoparticles

Article

Abstract

In the present work, we report the thermophysical properties of ethylene glycol and water mixture based silver nanofluids. The thermo physical properties such as thermal conductivity, viscosity, density and specific heat are measured using KD2 Pro thermal properties analyser, capillary viscometer, electronic weighing balance and differential scanning calorimeter respectively. The thermal conductivity increases with the increase in particle concentration and temperature. The maximum enhancement of thermal conductivity observed is approximately ~12% for 0.15 vol% at 50°C. The higher thermal conductivity of the particle, Brownian motion and clustering of the particles could be the possible reason for the improvement in thermal conductivity of the nanofluid which is consistent with the published literature. The viscosity and density increases with increase in particle concentration and decreases with increase in temperature. The specific heat decreases with increase in particle concentration and increases with increase in temperature.

Keywords

Silver Ethylene glycol Nanofluid Thermal conductivity Viscosity Specific heat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. M. Peyghambarzadeh, S. H. Hashemabadi, S. M. Hoseini and M. S. Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators, International Communications in Heat and Mass Transfer, 38 (2011) 1283–1290.CrossRefGoogle Scholar
  2. [2]
    M. J. Nunney, Automotive Technology, 3rd Ed., SAE International, USA (1998).Google Scholar
  3. [3]
    G. Sharma and L. Kundan, Experimental Investigation into Thermal Conductivity and Viscosity of Al2O3 Based Engine Coolant (Nano-coolant), International Journal of Research in Mechanical Engineering & Technology, 3 (2013) 184–187.Google Scholar
  4. [4]
    S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, ASME FED 231/MD, 66 (1995) 99–103.Google Scholar
  5. [5]
    S. M. S. Murshed, K. C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, 47 (2008) 560–568.CrossRefGoogle Scholar
  6. [6]
    L. Godson, D. Mohan Lal and S. Wongwises, Measurement of thermo physical properties of metallic Nanofluids for high temperature applications, Nanoscale and Microscale Thermophysical Engineering, 14 (2010) 152–173.CrossRefGoogle Scholar
  7. [7]
    P. Sharma, I. H. Baek, T. Cho, S. Park and K. B. Lee, Enhancement of thermal conductivity of ethylene glycol based silver nanofluids, Powder Technology, 208 (2011) 7–19.CrossRefGoogle Scholar
  8. [8]
    V. Kumaresan and R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids, Thermochimica Acta, 545 (2012) 180–186.CrossRefGoogle Scholar
  9. [9]
    J. S. Jin, Thermal conduction of stable graphite suspensions considering structural characteristics of graphite aggregations, Journal of Mechanical Science and Technology, 27 (2013) 2893–2898.CrossRefGoogle Scholar
  10. [10]
    T. Yiamsawas, O. Mahian, A. S. Dalkilic, S. Kaewnai and S. Wongwises, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications, Applied Energy, 111 (2013) 40–45.CrossRefGoogle Scholar
  11. [11]
    V. Trisaksri and S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews, 11 (2007) 512–523.CrossRefGoogle Scholar
  12. [12]
    L. Godson, B. Raja, D. Mohan Lal and S. Wongwises, Enhancement of heat transfer using nanofluids-An overview, Renewable and Sustainable Energy Reviews, 14 (2010) 629–641.CrossRefGoogle Scholar
  13. [13]
    C. Pang, J. W. Lee, H. Hong and Y. T. Kang, Heat conduction mechanism in nanofluids, Journal of Mechanical Science and Technology, 28 (2014) 2925–2936.CrossRefGoogle Scholar
  14. [14]
    J. Fan and L. Wang, Erratum: Review of Heat Conduction in Nanofluids, Journal of Heat Transfer, 133 (4) (2011) 040801–14.CrossRefGoogle Scholar
  15. [15]
    C. Kleinstreuer and Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters, 6 (2011) 1–13.CrossRefGoogle Scholar
  16. [16]
    J. Buongiorno et al., A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics, 106 (9) (2009) 1–14.CrossRefGoogle Scholar
  17. [17]
    D. E. Robertis, E. H. H. Cosme, R. S. Neves, A. Yu. Kuznetsov, A. P. C. Campos, S. M. Landi and C. A. Achete, Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids, Appl. Therm. Eng., 41 (2012) 10–17.CrossRefGoogle Scholar
  18. [18]
    P. K. Namburu, D. P. Kulkarni, D. Misra and D. K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 32 (2) (2007) 397–402.CrossRefGoogle Scholar
  19. [19]
    D. P. Kulkarni, R. S. Vajjha, D. K. Das and D. Oliva, Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant, Applied Thermal Engineering, 28 (2008) 1774–1781.CrossRefGoogle Scholar
  20. [20]
    M. N. Pantzali, A. G. Kanaris, K. D. Antoniadis, A. A. Mouza and S. V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, International Journal of Heat and Fluid Flow, 30 (2009) 14–19.CrossRefGoogle Scholar
  21. [21]
    S. D. Pandey and V. K. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science, 38 (2012) 248–256.CrossRefGoogle Scholar
  22. [22]
    A. Ghozatloo, A. Rashidi and M. S. Niassar, Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science, 53 (2014) 136–141.CrossRefGoogle Scholar
  23. [23]
    I. M. Shahrul, I. M. Mahbubul, S. S. Khaleduzzaman, R. Saidur and M. F. M. Sabri, A comparative review on the specific heat of nanofluids for energy perspective, Renewable and Sustainable Energy Reviews, 38 (2014) 88–98.CrossRefGoogle Scholar
  24. [24]
    L. Godson, K. Deepak, C. Enoch, B. Jefferson and B. Raja, Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger, Archives of Civil and Mechanical Engineering, 14 (2014) 489–496.CrossRefGoogle Scholar
  25. [25]
    R. M. Mostafizur, M. H. U. Bhuiyan, R. Saidur and A. R. Abdul Aziz, Thermal conductivity variation for methanol based nanofluids, International Journal of Heat and Mass Transfer, 76 (2014) 350–356.CrossRefGoogle Scholar
  26. [26]
    R. Mondragón, C. Segarra, R. Martínez-Cuenca, J. Enrique Juliá and J. Carlos Jarque, Experimental characterization and modeling of thermophysical properties of nanofluids at high temperature conditions for heat transfer applications, Powder Technology, 249 (2013) 516–529.CrossRefGoogle Scholar
  27. [27]
    M. Hemmat Esfe, A. Karimipour, W. M. Yan, M. Akbari, M. Reza Safaei and M. Dahari, Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles, International Journal of Heat and Mass Transfer, 88 (2015) 728–734.CrossRefGoogle Scholar
  28. [28]
    A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri and M. M. Pi neirob, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids, Fluid Phase Equilibria, 337 (2013) 119–124.CrossRefGoogle Scholar
  29. [29]
    M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido and M. M. Piñeiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Research Letters, 6 (221) (2011) 1–11.Google Scholar
  30. [30]
    J. C. Maxwell, Treatise on Electricity and Magnetism, Clarendon Press, Oxford, USA (1873).MATHGoogle Scholar
  31. [31]
    K. F. Vincent Wong and T. Kurma, Transport properties of alumina nanofluids, Nanotechnology, 19 (2008) 1–8.Google Scholar
  32. [32]
    S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, T. Inoue, P. Zhao, M. Watanabe, S. Chiashi, J. Shiomi and S. Maruyama, Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion, Materials Express, 2 (2012) 213–223.CrossRefGoogle Scholar
  33. [33]
    D. A. Drew and S.L. Passman, Theory of Multi Component Fluids, Springer, Berlin (1999).Google Scholar
  34. [34]
    H. C. Brinkman, The viscosity of concentrated suspensions and solution, Journal of Chemical Physics, 20 (1952) 571–581.CrossRefGoogle Scholar
  35. [35]
    G. K. Batchelor, The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, Journal of Fluid Mechanics, 83 (1977) 97–117.MathSciNetCrossRefGoogle Scholar
  36. [36]
    X. Wang, X. Xu and S. U. S. Choi, Thermal Conductivity of Nanoparticles-Fluid Mixture, Journal of Thermo physics and Heat Transfer, 13 (1999) 474–480.CrossRefGoogle Scholar
  37. [37]
    B. C. Pak and C. I. Young, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11 (1998) 151–170.CrossRefGoogle Scholar
  38. [38]
    Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000) 3701–3707.CrossRefMATHGoogle Scholar
  39. [39]
    ASHRAE handbook, fundamentals, American Society of Heating, Refrigerating and air-conditioning engineers Inc., Atlanta, GA (2013).Google Scholar
  40. [40]
    C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. Angue Mintsa, Temperature and particlesize dependent viscosity data for water-based nanofluids-Hysteresis phenomenon, International Journal of Heat and Fluid Flow, 28 (2007) 1492–1506.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Refrigeration and Air Conditioning Division, Department of Mechanical EngineeringAnna UniversityTamil NaduIndia
  2. 2.School of EngineeringIndian Institute of TechnologyMandi, Himachal PradeshIndia

Personalised recommendations