Skip to main content
Log in

Study on design of progressive dies for manufacture of automobile structural member using DP980 advanced high strength steel

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Advanced high-strength steel (AHSS) is widely used in automobile manufacturing to reduce the weight of vehicles, thereby improving fuel efficiency. However, the high yield and tensile strength of AHSS leads to a serious springback problem in the cold sheet metal forming process. This phenomenon has delayed the implementation of AHSS in vehicle parts due to the resulting negative impact on part accuracy. In this study, parameter optimization and multi-stage die compensation were conducted with Finite element (FE) analysis to develop a progressive forming process for automobile structural members using DP980. The FE simulation used the Yoshida-Uemori model to predict the springback phenomenon accurately. The key parameters that significantly influence the springback behavior were optimized using FE simulation and the Taguchi method. The simulation results were used to determine the die and mold compensation. After the parameter optimization and multi-stage die compensation, the final part was obtained with acceptable dimensional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lai and R. Brun, Latest developments in sheet metal forming technology and materials for automotive application: The use of ultra high strength steels at fiat to reach weight reduction at sustainable costs, Key Engineering Materials, 344 (2007) 1–8.

    Article  Google Scholar 

  2. M. Kleiner, M. Geiger and A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Annals- Manufacturing Technology, 52 (2) (2003) 521–542.

    Article  Google Scholar 

  3. C. H. Suh, Y. C. Jung and Y. S. Kim, Effects of thickness and surface roughness on mechanical properties of aluminum sheets, Journal of Mechanical Science and Technology, 24 (10) (2010) 2091–2098.

    Article  Google Scholar 

  4. K. Mori, K. Akita and Y. Abe, Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press, International Journal of Machine Tools & Manufacture, 47 (2) (2007) 321–325.

    Article  Google Scholar 

  5. S. W. Choi, S. H. Park, H. S. Jeong, J. R. Cho and S. H. Park, Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process, Journal of Mechanical Science and Technology, 26 (8) (2012) 2397–2403.

    Article  Google Scholar 

  6. W. Gan, S. S. Babu, N. Kapustka and H. Robert, Microstructural effects on the springback of advanced high-strength steel, Metallurgy and Materials Transactions A, 37 (11) (2006) 3221–3231.

    Article  Google Scholar 

  7. T. Senuma, Physical metallurgy of modern high strength steel sheets, Iron Steel Institude of Japan International, 41 (6) (2001) 520–532.

    Article  Google Scholar 

  8. S. M. Song, K. Sugimoto, M. Kobayashi, H. Matsubara and T. Kashima, Impact properties of low alloy trip steels, Tetsuto-Hagane, 86 (8) (2000) 563–569.

    Google Scholar 

  9. G. Hussain, N. Hayat and G. Lin, Pyramid as test geometry to evaluate formability in incremental forming: Recent results, Journal of Mechanical Science and Technology, 26 (8) (2012) 2337–2345.

    Article  Google Scholar 

  10. B. G. Kim, I. S. Lee and Y. T. Keum, Study on the springback reduction of automotive advanced high strength steel panel, Transactions of Materials Processing, 18 (6) (2009).

    Google Scholar 

  11. W. D. Carden, L. M. Geng, D. K. Matlock and R. H. Wagoner, Measurement of springback, International Journal of Mechanical Sciences, 44 (1) (2002) 79–101.

    Article  MATH  Google Scholar 

  12. P. A. Eggertsen and K. Mattiasson, On constitutive modeling for springback analysis, International Journal of Mechanical Sciences, 52 (6) (2010) 804–818.

    Article  Google Scholar 

  13. T. Souza and B. F. Rolfe, Understanding robustness of springback in high strength steels, International Journal of Mechanical Sciences, 68 (2013) 236–245.

    Article  Google Scholar 

  14. N. Narasimhan and M. Lovell, Predicting springback in sheet metal forming: An explicit to implicit sequential solution procedure, Finite Elements in Analysis and Design, 33 (1) (1999) 29–42.

    Article  MATH  Google Scholar 

  15. A. Baba and Y. Tozawa, Effects of tensile force in stretchforming process on the springback, Bulletin of the Japan Society of Mechanical Engineers, 7 (28) (1964) 834–843.

    Article  Google Scholar 

  16. X. A. Yang and F. Ruan, A die design method for springback compensation based on displacement adjustment, International Journal of Mechanical Sciences, 53 (5) (2011) 399–406.

    Article  Google Scholar 

  17. W. Gan and R. H. Wagoner, Die design method for sheet springback, International Journal of Mechanical Sciences, 46 (7) (2004) 1097–1113.

    Article  Google Scholar 

  18. A. P. Karafillis and M. C. Boyce, Tooling design accomodating springback errors, Journal of Materials Processing Technology, 32 (1-2) (1992) 499–508.

    Article  Google Scholar 

  19. H. S. Cheng, J. Cao and C. Xia, An accelerated springback compensation method, International Journal of Mechanical Sciences, 49 (3) (2007) 267–279.

    Article  Google Scholar 

  20. A. Rosochowski, Die compensation procedure to negate die deflection and component springback, Journal of Materials Processing Technology, 115 (2) (2001) 187–191.

    Article  Google Scholar 

  21. O. Kayabasi and B. Ekici, Automated design methodology for automobile side panel die using an effective optimization approach, Materials & Design, 28 (10) (2007) 2665–2672.

    Article  Google Scholar 

  22. J. Y. Kim, N. S. Kim and M. S. Huh, Optimum blank design of an automobile sub-frame, Journal of Materials Processing Technology, 101 (1-3) (2000) 31–43.

    Article  Google Scholar 

  23. Z. Zhibing, L. Yuqi, D. Ting and L. Zhigang, Blank design and formability prediction of complicated progressive die stamping part using a multi-step unfolding method, Journal of Materials Processing Technology, 205 (1-3)(2008) 425–431.

    Article  Google Scholar 

  24. PAM-STAMP 2G Professional 64-Bit.

  25. 2012.2PAM-STAMP Manual, 2009 User’s Guide.

  26. L. Taylor, J. Cao, A. P Karafillis and M. C Boyce, Numerical simulations of sheet metal forming, Journal of Materials Processing Technology, 50 (1-4) (1995) 168–179.

    Article  Google Scholar 

  27. F. Pourboghrat and E. Chu, Prediction of springback and sidewall curl in 2d draw bending, Journal of Materials Processing Technology, 50 (1-4) (1995) 361–374.

    Article  Google Scholar 

  28. F. Yoshida and T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, International Journal of Plasticity, 18 (5-6) (2002) 661–686.

    Article  MATH  Google Scholar 

  29. A. Ghaei, D. E. Green and A. Taherizadeh, Semi-implicit numerical integration of Yoshida-Uemori two-surface plasticity model, International Journal of Mechanical Sciences, 52 (4) (2010) 531–540.

    Article  Google Scholar 

  30. F. Yoshida, T. Uemori and K. Fujiwara, Elastic-plastic behavior of steel sheets under in-plane cyclic tensioncompression at large strain, International Journal of Plasticity, 18 (5-6) (2002) 633–659.

    Article  MATH  Google Scholar 

  31. F. Yoshida and T. Uemori, A model of large-strain cyclic plasticity and its application to springback simulation, International Journal of Mechanical Sciences, 45 (10) (2003) 1687–1702.

    Article  MATH  Google Scholar 

  32. F. Yoshida, M. Urabe and V. V. Toropov, Identification of material parameters in constitutive model for sheet metals from cyclic bending tests, International Journal of Mechanical Sciences, 40 (2-3) (1998) 237–249.

    Article  Google Scholar 

  33. F. Yoshida, T. Uemori, T. Okada and V. V. Toropov, Identification of material parameters in large-strain cyclic plasticity models for sheet metal forming applications, Proceedings of Eighth International Symposium on Plasticity and its Current Applications (2000) 612–614.

    Google Scholar 

  34. A. Bendell, J. Disney and W. A. Pridmore, Taguchi methods: applications in world industry, IFS Publications, UK (1989).

    Google Scholar 

  35. P. Senthil and K. S. Amirthagadeswaran, Optimization of squeeze casting parameters for non-symmetrical AC2A aluminium alloy castings through Taguchi method, Journal of Mechanical Science and Technology, 26 (4) (2012) 1141–1147.

    Article  Google Scholar 

  36. N. Muhammad, Y. H. P. Manurung, M. Hafidzi, S. K. Abas, G. Tham and E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, Journal of Mechanical Science and Technology, 26 (8) (2012) 2365–2370.

    Article  Google Scholar 

  37. F. K. Chen and J. H. Liu, Analysis of an equivalent drawbead model for finite element simulation of a stamping process, International Journal of Machine Tools & Manufacture, 37 (4) (1997) 409–423.

    Article  Google Scholar 

  38. C. H. Cha, S. K. Lee, D. C. Ko and B. M. Kim, A study on the forming of automotive front side member part with ultra high strength steel of DP980, Transactions of Materials Processing, 18 (1) (2009) 39–44.

    Article  Google Scholar 

  39. G. Taguchi, Introduction to quality engineering, Asian Productivity Organization, Tokyo (1990).

    Google Scholar 

  40. H. H. Le, Taguchi methods principles and practices of quality design, Gau Lih Book Co., Taiwan (2008).

    Google Scholar 

  41. D. Y. Lee, B. S. Choi, J. H. Hwang, I. K. Baek and K. Y. Choi, Springback control of an automotive surround molding part using automatic die compensation module, Transactions of Materials Processing, 18 (3) (2009) 210–216.

    Article  Google Scholar 

  42. W. Gan and R. H. Wagoner, Die design method for sheet springback, International Journal of Mechanical Sciences, 46 (7) (2004) 1097–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Sik Shim.

Additional information

Recommended by Associate Editor Dae-Chul Ko

Do-Sik Shim received Ph.D. in Mechanical Engineering from KAIST, Korea in 2010. He has been a senior researcher at KITECH since 2012. His research interests include incremental and roll forming for sheet metal, direct energy deposition (DED) and structural analysis as well as optimal design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, EM., Shim, DS., Son, JY. et al. Study on design of progressive dies for manufacture of automobile structural member using DP980 advanced high strength steel. J Mech Sci Technol 30, 853–864 (2016). https://doi.org/10.1007/s12206-016-0140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0140-7

Keywords

Navigation