Skip to main content
Log in

Design and implementation of a robust FNN-based adaptive sliding-mode controller for pneumatic actuator systems

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An adaptive Fourier neural network sliding mode controller with H tracking performance (AFNN-SMC+ H ) is applied for a Pneumatic actuator system (PAS) to overcome time-varying nonlinear dynamics and external disturbances. Benefiting from the use of orthogonal Fourier basis function, the proposed AFNN has fast estimated convergence speed; also, because AFNN has unique solution, it can avoid falling into the local minimum. The architecture of AFNN can also easily be determined by its clear physical meaning of the neurons. To attenuate the vibration of proportional directional control valve and the adaptive approximation error, the H tracking design technique is incorporated into the proposed AFNN-SMC. Finally, practical experiments are successfully implemented in position regulation, trajectory tracking, and velocity control of the PAS, which illustrates the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Lu, Y. R. Hwang and Y. T. Shen, Backstepping slidingmode control for a pneumatic control system, Proc. Inst. Mech. Eng., Part I J. Syst. and Control Eng., 224 (6) (2010) 763–770.

    Google Scholar 

  2. J. E. Bobrow and F. Jabbari, Adaptive pneumatic force actuator and position control, J. Dyn. Syst. Meas., Control, 113 (1991) 267–272.

    Google Scholar 

  3. B. W. McDonell and J. E. Bobrow, Adaptive tracking control of an air powered robot actuator, J. Dyn. Syst. Meas., Control, 115 (3) (1993) 427–433.

    MATH  Google Scholar 

  4. R. Richardson, A. R. Plummer and M. D. Brown, Self-tuning control of a pneumatic actuator under the influence of gravity, IEEE Trans. Control Syst. Technol., 9 (2) (2001) 330–334.

    Article  Google Scholar 

  5. J. Yao, Z. Jiao, D. Ma and L. Yan, High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties, IEEE/ASME Trans. Mechatronics, 19 (2) (2014) 633–641.

    Article  Google Scholar 

  6. J. Yao, Z. Jiao and D. Ma, A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances, IEEE/ASME Trans. Mechatronics, DOI: 10.1109/TMECH.2015. 2409893 (2015).

    Google Scholar 

  7. J. Yao, Z. Jiao and B. Yao, Nonlinear adaptive robust backstepping force control of hydraulic load simulator: Theory and experiments, Journal of Mechanical Science and Technology, 28 (4) (2014) 1499–1507.

    Article  Google Scholar 

  8. S. Drakunov, G. D. Hanchin, W. C. Su and Ü. Özgüner, Nonlinear control of rodless pneumatic servo actuator, or sliding modes versus Coulomb friction, Automatica, 33 (3) (1997) 1401–1408.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. B. van Varseveld and G. M. Bone, Accurate position control of a pneumatic actuator using on/off solenoid valves, IEEE Trans. Mechatronics, 2 (3) (1997) 195–204.

    Article  Google Scholar 

  10. J. Wang, J. Pu, P. R. Moore and Z. Zhang, Modeling study and servo-control of air motor systems, Int. J. Contr., 71 (3) (1998) 459–476.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. H Lu, Y. R. Hwang and Y. T. Shen, Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system, ISA Trans., 50 (2) (2011) 278–286.

    Article  Google Scholar 

  12. J. Wang, Ü. Kotta and J. Ke, Tracking control of nonlinear pneumatic actuator systems using static state feedback linearization of the input–output map, Proc. Estonian Acad. Sci. Phys. Math., 56 (1) (2007) 47–66.

    MATH  Google Scholar 

  13. J. E. Slotin and W. Li, Applied nonlinear control, Prentice-Hall Inc, New Jersey (1991).

    Google Scholar 

  14. H. I. Ali, S. B. Noor and B. M. M. H. Marhaban, A review of pneumatic actuators (Modeling and control), Australian Journal of Basic and Applied Sciences, 3 (2) (2009) 440–454.

    Google Scholar 

  15. H. Lee, E. Kim, H.-J. Kang and M. Park, Design of a sliding mode controller with fuzzy sliding surfaces, Proc. Inst. Elect. Eng., 145 (5) (1998) 411–418.

    Google Scholar 

  16. Y. S. Lu and J. S. Chen, A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems, IEEE Trans. Ind. Electron., 41 (5) (1994) 492–502.

  17. Q. P. Ha, D. C. Rye and H. F. Durrant-Whyte, Fuzzy moving sliding mode control with application to robotic manipulators, Automatica, 35 (1999) 607–616.

    Article  MATH  Google Scholar 

  18. S. B. Choi and J. S. Kim, A fuzzy-sliding mode controller for robust tracking of robotic manipulators, Mechatronics, 7 (2) (1997) 199–216.

    Article  Google Scholar 

  19. G. C. Hwang and S. C. Lin, A stability approach to fuzzy control design for nonlinear systems, Fuzzy Sets Syst., 48 (3) (1992) 279–287.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Richer and Y. Hurmuzlu, A high performance pneumatic force actuator system: Part І-Nonlinear mathematical model, J. Dyn. Syst. Meas., Control, 122 (2000) 416–425.

    Article  Google Scholar 

  21. E. Richer and Y. Hurmuzlu, A high performance pneumatic force actuator system: Part II-Nonlinear controller design, J. Dyn. Syst. Meas., Control, 122 (2000) 426–434.

    Article  Google Scholar 

  22. J. E. Bobrow and B. W. McDonell, Modeling, identification, and control of a pneumatically actuated, force controllable robot, IEEE Trans. Robotics and Automation, 14 (5) (1998) 732–742.

    Article  Google Scholar 

  23. F. C. Chen and C. C. Liu, Adaptively controlling nonlinear continuous-time systems using multilayer neural networks, IEEE Trans. Autom. Control, 39 (10) (1994) 1306–1310.

    Article  MATH  MathSciNet  Google Scholar 

  24. F. C. Chen and H. K. Khalil, Adaptive control of a class of nonlinear discrete-time systems using neural networks, IEEE Trans. Autom. Control, 40 (5) (1995) 791–801.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. L. Lewis, A. Yesildirek and K. Liu, Multilayer neural-net robot controller with guaranteed tracking performance, IEEE Trans. Neural Networks, 7 (2) (1996) 388–398.

    Article  Google Scholar 

  26. S. Jagannathan and F. L. Lewis, Discrete-time neural net controller for a class of nonlinear dynamical systems, IEEE Trans. Automatic Control, 41 (10) (1996) 1693–1699.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Jagannathan, Control of a class of nonlinear discrete-time system using multilayer neural networks, IEEE Trans. Neural Networks, 12 (5) (2008) 1113–1120.

    Article  MathSciNet  Google Scholar 

  28. S. Jagannathan and P. He, Neural-network-based statefeedback control of a nonlinear discrete-time system in nonstrict feedback form, IEEE Trans. Neural Networks, 19 (12) (2008) 2073–2087.

    Article  Google Scholar 

  29. C. Yang, S. S. Ge, C. Xiang, T. Y. Chai and T. H. Lee, Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach, IEEE Trans. Neural Networks, 19 (11) (2008) 1873–1886.

    Article  Google Scholar 

  30. Y. C. Tsai and A. C. Huang, FAT-based adaptive control for pneumatic servo systems with mismatched uncertainties, Mechanical Systems and Signal Processing, 22 (2008) 1263–1273.

    Article  Google Scholar 

  31. T. Zhang, S. S. Ge and C. C. Hang, Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica, 36 (12) (2000) 835–1846.

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Y. Wang, M. L. Chan, C. C. J. Hsu and T. T. Lee, H¥ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach, IEEE Trans. Systems, Man, Cybernetics B, 32 (4) (2002) 483–492.

    Article  Google Scholar 

  33. W. S. Chen and Z. Q. Zhang, Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign, Fuzzy Sets and Systems, 161 (6) (2010) 821–836.

    Article  MATH  MathSciNet  Google Scholar 

  34. C. F. Hsu, C. M. Lin and T. T. Lee, Wavelet adaptive backstepping control for a class of nonlinear systems, IEEE Trans. Neural Networks, 17 (5) (2006) 1175–1183.

    Article  Google Scholar 

  35. J. Li, W. S. Chen and J. M. Li, Adaptive NN output-feedback stabilization for a class of strict-feedback stochastic nonlinear systems, ISA Trans., 48 (4) (2009) 468–475.

    Article  Google Scholar 

  36. M. M. Polycarpou, Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Automatic Control, 41 (3) (1996) 447–451.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. Zuo and L. Cai, Adaptive-Fourier-neural-network-based control for a class of uncertain nonlinear systems, IEEE Trans. Neural Networks, 19 (10) (2008) 1689–1701.

    Article  Google Scholar 

  38. B. S. Chen, C. H. Lee and Y. C. Chang, H¥ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach, IEEE Trans. Fuzzy Systems, 4 (1) (1996) 32–43.

  39. W. Zuo and L. Cai, Adaptive-Fourier-neural-network-based control for a class of uncertain nonlinear systems, IEEE Trans. Neural Networks, 19 (10) (2008) 1689–1701.

    Article  Google Scholar 

  40. W. Zuo, Y. Zhu and L. Cai, Fourier-neural-network-based learning control for a class of uncertain nonlinear systems with flexible components, IEEE Trans. Neural Networks, 20 (1) (2009) 139–151.

    Article  Google Scholar 

  41. Z. Yang, Z. Wei and L. Cai, Tracking control of a belt-driving system using improved Fourier series based learning controller, Proc. of IEEE International Conference on Intelligent Robots and Systems (2008) 881–886.

    Google Scholar 

  42. B. W. Andersen, The analysis and design of pneumatic systems, Krieger Publishing Co., New York, USA (1976).

  43. J. F. Blackburn, G. Reethof and J. L. Shearer, Fluid power control, The Technology Press and Wiley, New York (1960).

    Google Scholar 

  44. S. Armstrong-Helouvry, P. Dupont and C. Canudas De Wit, Friction in servo machines: Analysis and control methods, Transactions of the ASME, J. of Application, Mechanics, and Reverend, 47 (7) (1994) 275–306.

    MATH  Google Scholar 

  45. S. Armstrong-Helouvry, P. Dupont and C. Canudas De Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30 (1994) 1083–1183.

    Article  MATH  Google Scholar 

  46. W. Rudin, Principles of mathematical analysis, 3rd ed., McGraw-Hill Inc., New York, USA (1976).

    MATH  Google Scholar 

  47. J. Huang and F. L. Lewis, Neural-network predictive control for nonlinear dynamic systems with time-delay, IEEE Trans. Neural Networks, 14 (2) (2003) 377–389.

    Article  Google Scholar 

  48. S. Lin and A. A. Goldenberg, Neural-network control of mobile manipulators, IEEE Trans. Neural Networks, 12 (5) (2001) 1121–113.

    Article  Google Scholar 

  49. J. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, N.J. (1991).

  50. W. Jihong, K. Ülle and K. Jia, Tracking control of nonlinear pneumatic actuator systems using static state feedback linearization of the input-output map, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics, 56 (1) (2007) 47–66.

    MATH  Google Scholar 

  51. W. Perruquetti, T. Floquet and P. Borne, A note on sliding observer and controller for generalized canonical forms, Proc. of the 37th IEEE Conference on Decision and Control (1998) 1920–1925.

    Google Scholar 

  52. S. W. Kim and J. J. Lee, Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets and Systems, 117 (3) (1995) 359–367.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Hsum Li.

Additional information

Lian-Wang Lee received the M.S. in automation and control and the Ph.D. from National Taiwan University of Science and Technology, Taipei, in 2000 and 2009, respectively. He is an Assistant Professor with the Department of Mechanical Engineering, Lunghwa University of Science and Technology, Guishan, Taiwan. His research interests include fluid power control, nonlinear control, mechatronics, intelligent control, adaptive control, and sliding mode control.

I-Hsum Li received the M.S. in electronic engineering form Fu-Jen Catholic University, Taipei, Taiwan, in 2001, and the Ph.D. at National Taiwan University of Science and Technology, Taipei, Taiwan, in 2007. He is an Associate Professor in the Department of Computer Science and Information Engineering in Lee-Ming Institute of Technology, Taiwan. His research interests include genetic algorithms, fuzzy logic systems, adaptive control, system identification and antilock braking system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, LW., Li, IH. Design and implementation of a robust FNN-based adaptive sliding-mode controller for pneumatic actuator systems. J Mech Sci Technol 30, 381–396 (2016). https://doi.org/10.1007/s12206-015-1243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-1243-2

Keywords

Navigation