Skip to main content

Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer


In the present study, a robust Incompressible smoothed particle hydrodynamics (ISPH) method, based on an advanced Smoothed particle hydrodynamics (SPH) discretization, is introduced to study the effects of the non-Newtonian power-law index and stirrer frequency on fluid mixing in an active micromixer that uses an oscillating stir-bar. Two Reynolds numbers (20 and 72) are considered, and more than 70 SPH simulations are carried out, in order to investigate the effects of the power-law index and stirrer frequency on fluid mixing. The results show that this active micromixer is more efficient at the lower power-law indices.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Alapati, D. V. Fernandes and Y. K. Suh, Enhancement of mixing within a micro cavity by use of transient inducedcharge electro-osmotic flow around micro electrodes, J. Mech. Sci. Technol., 25 (6) (2011) 1495–1499.

    Article  Google Scholar 

  2. [2]

    N. T. Nguyen, Micromixers, fundamentals, design and fabrication, William Andrew Inc., Singapore (2008).

    Google Scholar 

  3. [3]

    V. Hessel, H. Löwe and F. Schönfeld, Micromixers—a review on passive and active mixing principles, Chem. Eng. Sci., 60 (sn8-9) (2005) 2479–2501.

    Article  Google Scholar 

  4. [4]

    L. Capretto, W. Cheng, M. Hill and X. Zhang, Micromixing within microfluidic devices, Top. Curr. Chem., 304 (2011) 27–68.

    Article  Google Scholar 

  5. [5]

    A. C. K. Lai and F. Z. Chen, Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors, Atoms. Environ., 41 (25) (2007) 5249–5256.

    Article  Google Scholar 

  6. [6]

    B. Celik, U. Akdag, S. Gunes and A. Beskok, Flow past an oscillating circular cylinder in a channel with an upstream splitter plate, Phys Fluids, 20 (2008) 103603 1–13.

    MATH  Google Scholar 

  7. [7]

    B. Celik and A. Beskok, Mixing induced by a transversely oscillating circular cylinder in a straight channel, Phys Fluids, 21 (2009) 073601 1–9.

    MATH  Google Scholar 

  8. [8]

    S. J. An, Y. D. Kim, S. Heu and J. S. Maeng, Numerical study of the mixing characteristics for rotating and oscillating stirrers in a microchannel, J. Korean. Phys. Soc., 49 (2) (2006) 651–659.

    Google Scholar 

  9. [9]

    Y. D. Kim, S. J. An and J. S. Maeng, Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer, J. Korean. Phys. Soc., 50 (2) (2007) 505–513.

    Article  Google Scholar 

  10. [10]

    J. Y. Park, Y. D. Kim, S. R. Kim, S. Y. Han and J. S. Maeng, Robust design of an active micro-mixer based on the Taguchi method, Sensor Actuat. B, 129 (2) (2008) 790–798.

    Article  Google Scholar 

  11. [11]

    S. P. Ryu, J. Y. Park and S. Y. Han, Optimum design of an active micro-mixer using successive kriging method, Int. J. Precis. Eng. Manuf., 12 (5) (2011) 849–855.

    Article  Google Scholar 

  12. [12]

    R. A. Gingold and J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc., 181 (1977) 375–389.

    Article  MATH  Google Scholar 

  13. [13]

    L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (1997) 1013–1024.

    Article  Google Scholar 

  14. [14]

    S. H. Sadek and M. Yildiz, Modeling die swell of secondorder fluids using smoothed particle hydrodynamics, ASME J. Fluids Eng., 135 (5) (2013) 051103–051121.

    Article  Google Scholar 

  15. [15]

    A. Farrokhpanah, B. Samareh and J. Mostaghimi, Applying contact angle to a two-dimensional multiphase smoothed particle hydrodynamics model, ASME J. Fluids Eng., 137 (4) (2015) 041303–041312.

    Article  Google Scholar 

  16. [16]

    A. M. Aly and S. W. Lee, Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics, J. Mech. Sci. Technol., 28 (6) (2014) 2179–2188.

    Article  Google Scholar 

  17. [17]

    K. C. Ng and E. Y. K. Ng, Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel, Chem. Eng. Sci., 104 (2013) 960–974.

    Article  Google Scholar 

  18. [18]

    K. C. Ng, E. Y. K. Ng and W. H. Lam, Lagrangian simulation of steady and unsteady laminar mixing by plate impeller in a cylindrical vessel, Ind. Eng Chem. Res., 52 (29) (2013) 10004–10014.

    Article  Google Scholar 

  19. [19]

    M. Robinson, P. Cleary and J. Monaghan, Analysis of mixing in a twin cam mixer using smoothed particle hydrodynamics, AIChE, 54 (8) (2008) 1987–1998.

    Article  Google Scholar 

  20. [20]

    R. Shamsoddini, M. Sefid and R. Fatehi, Lagrangian simulation and analysis of the micromixing phenomena in a cylindrical paddle mixer using a modified Weakly Compressible Smoothed Particle Hydrodynamics Method, Asia-Pac. J. Chem. Eng., 10 (1) (2015) 112–122.

    Article  Google Scholar 

  21. [21]

    R. Shamsoddini, M. Sefid and R. Fatehi, ISPH modelling and analysis of fluid mixing in a microchannel with an oscillating or a rotating stirrer, Eng. Appl. Comp. Fluid., 8 (2) (2014) 289–298.

    Google Scholar 

  22. [22]

    M. Hadigol, R. Nosrati, A. Nourbakhsh and M. Raisee, Numerical study of electroosmotic micromixing of non-Newtonian fluids, J. Non-Newton. Fluid, 166 (2011) 965–971.

    Article  MATH  Google Scholar 

  23. [23]

    C. K. Chen and C. C. Cho, Numerical investigation into mixing performance of electrokinetically-driven power-law fluids in microchannel with patterned trapezoid Blocks, WASET, 79 (2013) 728–733.

    Google Scholar 

  24. [24]

    P. Prajapati and F. Ein-Mozaffari, CFD investigation of the mixing of yield-pseudoplastic fluids with anchor impellers, Chem. Eng. Technol., 32 (2009) 1211–1218.

    Article  Google Scholar 

  25. [25]

    R. P. Chhabra, L. Bouvier, G. Delaplace, G. Cuvelier, S. Domenek and C. André, Determination of mixing times with helical ribbon impeller for non-Newtonian viscous fluids using an advanced imaging method, Chem. Eng. Technol., 30 (2007) 1686–1691.

    Article  Google Scholar 

  26. [26]

    M. Sefid, R. Fatehi and R. Shamsoddini, A modified smoothed particle hydrodynamics scheme to model the stationary and moving boundary problems for Newtonian fluid flows, ASME J. Fluids Eng., 137 (3) (2015) 031201–9.

    Article  Google Scholar 

  27. [27]

    H. Wendland, Piecewise polynomial, positive definite and compactly sup-ported radial functions of minimal degree, Adv. Comput. Math., 4 (1995) 389–396.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pair ing instability, Mon. Not. Roy. Astron. Soc., 425 (2012) 1068–1082.

    Article  Google Scholar 

  29. [29]

    J. Bonet and T. S. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulation, Comput. Meth. Appl. Mech. Eng., 180 (sn1-2) (2004) 97–115.

    MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    R. Fatehi and M. T. Manzari, Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput. Math. Appl., 61 (2) (2011) 482–498.

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    M. R. Hashemi, R. Fatehi and M. T. Manzari, SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid, J. Non-Newton, Fluid, 166 (2011) 239–1252.

    MATH  Google Scholar 

  32. [32]

    X. J. Fan, R. I. Tanner and R. Zheng, Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow, J. Non-Newton, Fluid, 165 (2010) 219–226.

    MATH  Google Scholar 

  33. [33]

    M. Vakilha and M. T. Manzari, Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics, Transport Porous Med., 74 (2008) 331–346.

    MathSciNet  Article  Google Scholar 

  34. [34]

    A. D. Monaco, S. Manenti, M. Gallati, S. Sibilla, G. Agate and R. Guandalini, SPH modeling of solid boundaries through a semi-analytic Approach, Eng. Appl. Comp. Fluid, 5 (2011) 1–15.

    Google Scholar 

  35. [35]

    R. Fatehi and M. T. Manzari, A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition, Int. J. Numer. Meth., FL, 68 (2011) 905–921.

    MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    E. S. Lee, C. Moulinec, R. Xu, D. Laurence and P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J. Comput. Phys., 227 (18) (2008) 8417–8436.

    MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    M. Ozbulut, M. Yildiz and O. Goren, A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows, Int. J. Mech. Sci., 79 (2014) 56–65.

    Article  Google Scholar 

  38. [38]

    M. S. Shadloo, A. Zainali, S. H. Sadek and M. Yildiz, Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies, Comput. Methods Appl. Mech. Engrg., 200 (2011) 1008–1020.

    MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    R. Xu, P. Stansby and D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J. Comput. Phys., 228 (18) (2009) 6703–6725.

    MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    D. Gobby, P. Angeli and A. Garvriilidis, Mixing characteristics of T-type microfluidic mixers, J. Micromech. Microeng., 11 (2001) 126–132.

    Article  Google Scholar 

  41. [41]

    D. Erickson and D. Li, Microchannel flow with patch-wise and periodic surface heterogeneity, Langmuir, 18 (2002) 8949–8959.

    Article  Google Scholar 

  42. [42]

    L. X. Qu, C. Norberg, L. Davidson, S. H. Peng and F. J. Wang, Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200, J. Fluids Struct., 39 (2013) 347–370.

    Article  Google Scholar 

  43. [43]

    D. Chatterjee and S. K. Gupta, Numerical study of the laminar flow past a rotating square cylinder at low spinning rates, ASME J. Fluids Eng., 137 (2) (2013) 021204–021214.

    Article  Google Scholar 

  44. [44]

    B. Bell and K. Surana, P-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow, Int. J. Numer. Meth. FL, 18 (1994) 127–162.

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rahim Shamsoddini.

Additional information

Rahim shamsoddini received his B.Sc degree from Shahid Bahonar University of Kerman and received his M.Sc. degree from University of Sistan and Baluchestan and recived his Ph.D. degree from Yazd University. He is currently an Assistant professor at Sirjan University of Technology.

Mohammad Sefid received his B.Sc., M.Sc. and Ph.D. degrees from school of Mechanical Engineering at Isfahan University of Technology. He is currently an Associate professor at Yazd University.

Rouhollah Fatehi received his B.Sc., M.Sc. and Ph.D. degrees from school of Mechanical Engineering at Sharif University of Technology. He is currently an Assistant professor at Persian Gulf University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamsoddini, R., Sefid, M. & Fatehi, R. Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer. J Mech Sci Technol 30, 307–316 (2016).

Download citation


  • Active micromixer
  • Non-Newtonian
  • Power-law
  • Stirrer