Skip to main content
Log in

An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The present study aims to implement a new selection method and a novel crossover operation in a real-coded genetic algorithm. The proposed selection method facilitates the establishment of a successively evolved population by combining several subpopulations: an elitist subpopulation, an off-spring subpopulation and a mutated subpopulation. A probabilistic crossover is performed based on the measure of probabilistic distance between the individuals. The concept of ‘allowance’ is suggested to describe the level of variance in the crossover operation. A number of nonlinear/non-convex functions and engineering optimization problems are explored to verify the capacities of the proposed strategies. The results are compared with those obtained from other genetic and nature-inspired algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Eshelman and J. D. Schaffer, Real-coded genetic algorithms and interval schemata, D. L. Whitley (ed.), Foundation of Genetic Algorithms 2, Morgan Kaufmann., San Mateo, CA (1993) 187–202.

    Google Scholar 

  2. Z. Tu and Y. Lu, A robust stochastic genetic algorithm (stga) for global numerical optimization, IEEE Trans. Evol. Comput., 8 (5) (2004) 456–470.

    Article  Google Scholar 

  3. W. W. Hager, D. W. Hearn and P. M. Pardalos, Large scale optimization: state of the art, Kluwer academic publishers, Dordrecht (1994).

    Google Scholar 

  4. X. Yao, Y. Liu and G. Lin, Fast evolutionary strategy, Proc. Evol. Program. VI, Springer-Verlag (1997) 151–161.

    Google Scholar 

  5. D. E. Goldberg, Genetic algorithm in search, optimization and machine learning, Addison-Wesley, Massachusetts (1989).

    MATH  Google Scholar 

  6. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer-Verlag, Berlin, Germany (1996).

    Book  MATH  Google Scholar 

  7. K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen and Z. Yang, Benchmark functions for the cec 2008 special session and competition on large scale global optimization, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008).

    Google Scholar 

  8. L. Tseng and C. Chen, Multiple trajectory search for large scale global optimization, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 3052–3059.

    Google Scholar 

  9. Y. Wang and B. Li, A restart univariate estimation of distribution algorithm: sampling under mixed gaussian and levy probability distribution, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 3917–3924.

    Google Scholar 

  10. J. Brest, A. Zamuda, B. Boskovic, M. Maucec and V. Zumer, High-Dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 2032–2039.

    Google Scholar 

  11. A. Zamuda, J. Brest, B. Boskovic and V. Zumerm, Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 3718–3725.

    Google Scholar 

  12. Z. Yang, K. Tang and X. Yao, Multilevel Cooperative Coevolution for Large Scale Optimization, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 1663–1670.

    Google Scholar 

  13. S. Zhao, J. Liang, P. Suganthan and M. F. Tasgetiren, Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 3845–3852.

    Google Scholar 

  14. C. MacNish and X. Yao, Direction matters in highdimensional optimization, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 2372–2379.

    Google Scholar 

  15. S. Hsieh, T. Sun, C. Liu and S. Tsai, Solving large scale global optimization using improved particle swarm optimizer, CEC 2008, IEEE Congr. Evol. Comput., Hong Kong (2008) 1777–1784.

    Google Scholar 

  16. D. E. Goldberg, Real-coded genetic algorithms, Virtual Alphabets, and Blocking, Complex Systems, 5 (2) (1991) 139–168.

    MathSciNet  MATH  Google Scholar 

  17. J. Jing, J. Yang and J. Ding, An improved simple genetic algorithm -accelerating genetic algorithm, Syst. Eng. -Theory & Practice, 21 (4) (2001) 8–13.

    Google Scholar 

  18. A. H. Wright, Genetic algorithms for real parameter optimization, Rawlins G. J. (Ed.), Foundations of Genetic Algorithms I, Morgan Kaufmann, San Mateo, CA (1991) 205–218.

    Google Scholar 

  19. L. D. Davis, Handbook of genetic algorithms, Van Nostrand Reinhold, New York (1989).

    Google Scholar 

  20. C. Janikow and Z. Michalewicz, An experimental comparison of binary and floating point representation in genetic algorithms, Proc. 4th Int. Conf. Genet. Algorithms, Morgan Kaufmann, San Francisco (1991) 31–36.

    Google Scholar 

  21. K. Deb, D. Joshi and A. Anand, Real-coded evolutionary algorithms with parent-centric recombination, CEC 2002, IEEE Congr. Evol. Comput., Hawaii (2002).

    Book  Google Scholar 

  22. S. Prestwich, S. A. Tarim, R. Rossi and B. Hnich, A steady-state genetic algorithm with resampling for noisy inventory control, Lecture Notes in Computer Science, Proc. 10th Int. conf. Parallel Probl. Solv. from Nat.: PPSN X, 5199, Dortmund, Germany (2008) 559–568.

    Google Scholar 

  23. K. Deb, S. Karthik and T. Okabe, Self-adaptive simulated binary crossover for real-parameter optimization, Proc. 9th Conf. Genetic and Evolut. Comput. London, England (2007) 1187–1194.

    Google Scholar 

  24. I. Ono, H. Kita and S. Kobayashi, A real-coded genetic algorithm using the unimodal normal distribution crossover, Natural Computing Series-Advances in evolutionary computing: theory and applications, Springer-Verlag New York Inc., NY, USA (2003) 213–237.

    Chapter  Google Scholar 

  25. K. Deep and M. Thakur, A new crossover operator for real coded genetic algorithms, Appl. Math. Comput., 188 (1) (2007) 895–911.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Deb, A. Anand and D. Joshi, A computationally efficient evolutionary algorithm for real-parameter optimization, Evol. Comput., 10 (4), 371–395 (2002).

    Article  Google Scholar 

  27. K. Krishnakumar, R. Swaminathan, S. Garg and S. Narayanaswamy, Solving large parameter optimization problems using genetic algorithms, Proc. AIAA Guid. Navig. Control. Conf., Baltimore, MD (1995) 449–460.

    Google Scholar 

  28. P. P. Angelov and J. A. Wright, A center-of-gravity-based recombination operator for genetic algorithms, Proceedings of 26th IEEE Annual Conference of the IEEE, Industrial Electronics Society, IECON2000, Nagoya, Japan (2000) 259–264.

    Google Scholar 

  29. G. Daoxiong and R. Xiaogang, A new multi-parent recombination genetic algorithm, Proceedings of the 6 World Congress on Intelligent Control and Automation, Hangzhou, China (2004) 2099–2103.

    Google Scholar 

  30. D. Thierens and D. Goldberg, Elitist recombination: an integrated selection recombination GA, Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL (1994) 508–512.

    Chapter  Google Scholar 

  31. G. Box and M. Muller, A note on the generation of random normal deviates, Ann. Math. Stat., 29 (2) (1958) 610–611.

    Article  MATH  Google Scholar 

  32. J. S. Arora, Introduction to Optimum design, McGraw-Hill, New York (1989).

    Google Scholar 

  33. K. Deb, Multi-objective optimization using evolutionary algorithm, John Wiley & Sons, Ltd., Chichester (2003) 84–132.

    Google Scholar 

  34. G. V. Reklaitis, A. Ravindran and K. M. Ragsdell, Engineering optimization methods and applications, Wiley, New York (1983).

    Google Scholar 

  35. R. T. Haftka, Z. Gürdal and M. Kamat, Elements of structural optimization, Kluwer Academic Publishers, Dordrecht (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsoo Lee.

Additional information

Jongsoo Lee received B.S. in Mechanical Engineering at Yonsei University, Korea in 198 and Ph.D. in Mechanical Engineering at Rensselaer Polytechnic Institute, Troy, NY in 1996. After a research associate at Rensselaer Rotorcraft Technology Center, he is a professor of Mechanical Engineering at Yonsei University. His research interests include multidisciplinary/multi-physics/multi-scale design optimization and reliability-based robust engineering design with applications to structures, structural dynamics, fluid-structure interactions and flow induced noise and vibration problems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, N.S., Lee, J. An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization. J Mech Sci Technol 30, 237–247 (2016). https://doi.org/10.1007/s12206-015-1227-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-1227-2

Keywords

Navigation