Skip to main content

Numerical study on proximal ischemia

Abstract

Brain artery occlusion is a major cause of cerebral stroke. During a stroke, perfusion decreases at tissues distal to the occlusion, but ischemia or hypoperfusion at tissues supplied by arterial branches proximal to the occlusion is not expected. However, ischemia proximal to the occlusion site has been observed without mechanical occlusion of the proximal branches. The mechanism of this unexpected ‘proximal ischemia’ is not well understood yet. In this study, transient three-dimensional computational fluid dynamics simulations of hemodynamic flow were performed to investigate ‘proximal ischemia’ using three non-Newtonian models and Newtonian model of a simple blood vessel consisting of an artery with one branch. Blood velocity of the artery dropped sharply after occlusion, resulting in shear rates low enough to cause red blood cell aggregation. The average shear rate in a cross-section of the artery during diastole was around 0.1 s−1, resulting in large red blood cell clots. Large aggregates formed in the artery have the potential to block the artery or the entrance of the branch.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. R. Sims and H. Muyderman. Mitochondria, oxidative metabolism and cell death in stroke, Biochim. Biophys. Acta., 1802 (1) (2010) 80–91.

    Article  Google Scholar 

  2. [2]

    J. A. Sirs, The flow of human blood through capillary tubes, J. Physiol. 442 (1) (1991) 569–583.

    Article  Google Scholar 

  3. [3]

    B. K. Lee, T. Alexy, R. B. Wenby and H. J. Meiselman, Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress, Biorheology, 44 (1) (2007) 29–35.

    Google Scholar 

  4. [4]

    J. B. Bederson, L. H. Pitts, M. Tsuji, M. C. Nishimura, R. L. Davis and H. Bartkowski, Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination, Stroke, 17 (3) (1986) 472–476.

    Article  Google Scholar 

  5. [5]

    W. Reinke, P. Gaehtgens and P. C. Johnson, Blood viscosity in small tubes: Effect of shear rate, aggregation and sedimentation, Am. J. Physiol., 253 (2) (1987) H540–H547.

    Google Scholar 

  6. [6]

    H. G. Morales, I. Larrabide, A. J. Geers, M. L. Aguilar and A. F. Frangi, Newtonian and non-newtonian blood flow in coiled cerebral aneurysms, J. Biomech., 46 (13) (2013) 2158–2164.

    Article  Google Scholar 

  7. [7]

    Ø. Evju, K. Valen-Sendstad and K. A. Mardal, A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions, J. Biomech., 46 (16) (2013) 2802–2808.

    Article  Google Scholar 

  8. [8]

    S. De Gruttola, K. Boomsma and D. Poulikakos. Computational simulation of a non-Newtonian model of the blood separation process, Artif. Organs, 29 (12) (2005) 949–959.

    Article  Google Scholar 

  9. [9]

    T. Fukushima, T. Matsuzawa and T. Azuma, Numerical analysis of blood flow in the vertebral artery, J. Biomech. Eng., 104 (2) (1982) 143–147.

    Article  Google Scholar 

  10. [10]

    S. A. Berger and L. D. Jou, Flows in stenotic vessels, Annu. Rev. Fluid Mech., 32 (1) (2000) 347–382.

    Article  MathSciNet  Google Scholar 

  11. [11]

    J. Cebral, M. Castro, O. Soto, R. Löhner and N. Alperin, Blood-flow models of the circle of Willis from magnetic resonance data, J. Eng. Math., 47 (3–4) (2003) 369–386.

    Article  MATH  Google Scholar 

  12. [12]

    A. G. Kanaris, A. D. Anastasiou and S. V. Paras, Numerical study of pulsatile blood flow in micro channels, Proc. of the 7 th European Congress of Chemical Engineering, Prague, Czech Republic (2010).

    Google Scholar 

  13. [13]

    S. Shin and D. Y. Keum, Measurement of blood viscosity using mass-detecting sensor, Biosens. Bioelectron, 17 (5) (2002) 383–388.

    Article  Google Scholar 

  14. [14]

    D. M. Eckmann, S. Bowers, M. Stecker and A. T. Cheung, Hematocrit, volume expander, temperature and shear rate effects on blood viscosity, Anesth. Analg., 91 (3) (2000) 539–545.

    Article  Google Scholar 

  15. [15]

    J. Jung, R. W. Lyczkowski, C. B. Panchal and A. Hassanein, Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J. Biomech. 39 (11) (2006) 2064–2073.

    Article  Google Scholar 

  16. [16]

    N. M. P. Kakalis, A. P. Mitsos, J. V. Byrne and Y. Ventikos, The haemodynamics of endovascular aneurysm treatment: A computational modelling approach for estimating the influence of multiple coil deployment, IEEE Trans. Med. Imaging, 27 (6) (2008) 814–824.

    Article  Google Scholar 

  17. [17]

    G. Arbia, C. Corsini, M. E. Moghadam, A. L. Marsden, F. Migliavacca, G. Pennati, T. Y. Hsia and I. E. Vignon-Clementel, Numerical blood flow simulation in surgical corrections: What do we need for an accurate analysis?, J. Surg. Res., 186 (1) (2014) 44–55.

    Article  Google Scholar 

  18. [18]

    V. M. Pereira, O. Brina, A. M. Gonzales, A. P. Narata, P. Bijlenga, K. Schaller, K. O. Lovblad and R. Ouared, Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: A virtual experiment, J. Biomech., 46 (9) (2013) 1531–1539.

    Article  Google Scholar 

  19. [19]

    T. M. Buckenham and I. A. Wright, Ultrasound of the extracranial vertebral artery, British J. Radiol., 77 (913) (2004) 15–20.

    Article  Google Scholar 

  20. [20]

    J. J. Bishop, A. S. Popel. M. Intaglietta and P. C. Johnson, Rheological effects of red blood cell aggregation in the venous network: A review of recent studies, Biorheology, 38 (2) (2001) 263–274.

    Google Scholar 

  21. [21]

    H. Schmid-Schönbein, P. Gaehtgens and H. Hirsch, On the shear rate dependence of red cell aggregation in vitro, J. Clin. Invest., 47 (6) (1968) 1447–1454.

    Article  Google Scholar 

  22. [22]

    S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity, Science, 168 (3934) (1970) 977–979.

    Article  Google Scholar 

  23. [23]

    B. Chen, F. Guo and H. Xiang, Visualization study of motion and deformation of red blood cells in a microchan nel with straight, divergent and convergent sections, J. Biol. Phys., 37 (4) (2011) 429–440.

    Article  Google Scholar 

  24. [24]

    C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, The mechanics of the Circulation, Second Ed., Cambridge University Press, Cambridge, UK (2012).

    Google Scholar 

  25. [25]

    Y. H. Kim, P. J. VandeVord and J. S. Lee, Multiphase non-Newtonian effects on pulsatile hemodynamics in a coronary artery, Int. J. Numer. Methods Fluids, 58 (7) (2008) 803–825.

    Article  MathSciNet  MATH  Google Scholar 

  26. [26]

    S. Chen, G. Barshtein, B. Gavish, Y. Mahler and S. Yedgar, Monitoring of red blood cell aggregability in a flowchamber by computerized image analysis, Clin. Hemorheol. Microcirc, 14 (4) (1994) 497–508.

    Google Scholar 

  27. [27]

    A. L. Copley, R. G. King, C. R. Huang and S. Oka, Erythrocyte sedimentation of human blood at varying shear rates, Biorheology, 13 (5) (1976) 281–286.

    Google Scholar 

  28. [28]

    M. Fenech, D. Garcia, H. Meiselman and G. Cloutier, A particle dynamic model of red blood cell aggregation kinetics, Ann. Biomed. Eng., 37 (11) (2009) 2299–2309.

    Article  Google Scholar 

  29. [29]

    R. S. Ajmani, Hypertension and hemorheology, Clin, Hemorheol, Microcirc, 17 (6) (1997) 397–420.

    Article  Google Scholar 

  30. [30]

    B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz and I. Levin, Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease, Sex. Transm. Dis., 32 (8) (2005) 484–486.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taesung Kim.

Additional information

Recommended by Associate Editor Sung Yang

Myungjoon Kim received his Bachelor of Science degree in Mechanical Engineering from Sungkyunkwan University of Technology, Korea in 2009. Currently, he is a candidate in the combined master’s and doctorate program in the School of Mechanical Engineering at Sungkyunkwan University. His research is focused on the numerical analysis of particles suspended in fluid.

Taesung Kim received his Bachelor of Science degree in Mechanical Engineering from Seoul National University of Technology, Korea in 1994. He received his Master of Science and Doctor of Philosophy degrees in Mechanical Engineering from the University of Minnesota, Minneapolis, MN, USA in 1998 and 2002, respectively. Dr. Kim currently works as a professor in the School of Mechanical Engineering and as an adjunct professor at the SKKU Advanced Institute of Nano Technology at Sungkyunkwan University in Suwon, Korea. His research interests include nanoparticle synthesis, development of applications related to bio aerosols, Chemical Mechanical Polishing and thin film synthesis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Min, T., Kwon, OK. et al. Numerical study on proximal ischemia. J Mech Sci Technol 29, 5523–5529 (2015). https://doi.org/10.1007/s12206-015-1153-3

Download citation

Keywords

  • Proximal ischemia
  • Non-newtonian model
  • Computational fluid dynamics
  • Shear rate