Skip to main content
Log in

hp-adaptive finite element method for linear elasticity using higher-order virtual node method

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Higher-order polygonal finite elements are developed for adaptive analyses of linear elastic problem. These elements are constructed using virtual node method based on partition of unity coupled with polynomial enrichment functions. Because the element shape functions are polynomials, the stiffness matrix is computed precisely with standard Gauss quadrature rules. Several numerical examples of linear elasticity are presented to validate the accuracy and convergence of the proposed elements. One of the advantages of the proposed elements is that they can be used as transition elements with hanging nodes on higher-order approximation meshes. Building on this advantage, h- and hp-adaptive finite element analyses of numerical examples with local singularities are performed on triangular quadtree meshes in order to demonstrate the performance of the adaptive strategies using the proposed elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Moorthy and S. Ghosh, Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, 185 (1) (2000) 37–74.

    Article  MATH  Google Scholar 

  2. S. Biabanaki and A. Khoei, A polygonal finite element method for modeling arbitrary interfaces in large deformation problems, Computational Mechanics, 50 (1) (2012) 19–33.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Talischi, G. Paulino and C. Le, Honeycomb Wachspress finite elements for structural topology optimization, Structural and Multidisciplinary Optimization, 37 (6) (2009) 569–583.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. F. Peters and E. Heymsfield, Application of the 2-D constant strain assumption to FEM elements consisting of an arbitrary number of nodes, International Journal of Solids and Structures, 40 (1) (2003) 143–159.

    Article  MATH  Google Scholar 

  5. A. Tabarraei and N. Sukumar, Adaptive computations on conforming quadtree meshes, Finite Elements in Analysis and Design, 41 (7) (2005) 686–702.

    Article  Google Scholar 

  6. E. L. Wachspress, A rational finite element basis, Elsevier, New York (1975).

    MATH  Google Scholar 

  7. M. S. Floater, Mean value coordinates, Computer Aided Geometric Design, 20 (1) (2003) 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Sukumar and A. Tabarraei, Conforming polygonal finite elements, International Journal for Numerical Methods in Engineering, 61 (12) (2004) 2045–2066.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Natarajan, S. Bordas and D. Roy Mahapatra, Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping, International Journal for Numerical Methods in Engineering, 80 (1) (2009) 103–134.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Mousavi, H. Xiao and N. Sukumar, Generalized Gaussian quadrature rules on arbitrary polygons, International Journal for Numerical Methods in Engineering, 82 (1) (2010) 99–113.

    MATH  MathSciNet  Google Scholar 

  11. M. Rashid and P. Gullett, On a finite element method with variable element topology, Computer Methods in Applied Mechanics and Engineering, 190 (11) (2000) 1509–1527.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Dai, G. Liu and T. Nguyen, An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics, Finite Elements in Analysis and Design, 43 (11) (2007) 847–860.

    Article  MathSciNet  Google Scholar 

  13. X.-h. Tang, S.-C. Wu, C. Zheng and J.-h. Zhang, A novel virtual node method for polygonal elements, Applied Mathematics and Mechanics, 30 (10) (2009) 1233–1246.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, 12 (10) (1978) 1597–1615.

    Article  MATH  Google Scholar 

  15. O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International Journal for Numerical Methods in Engineering, 24 (2) (1987) 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. C. Chellamuthu and N. Ida, Algorithms and data structures for 2D and 3D adaptive finite element mesh refinement, Finite Elements in Analysis and Design, 17 (3) (1994) 205–229.

    Article  MATH  Google Scholar 

  17. P. Krysl, E. Grinspun and P. Schröder, Natural hierarchical refinement for finite element methods, International Journal for Numerical Methods in Engineering, 56 (8) (2003) 1109–1124.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Wille, A structured tri-tree search method for generation of optimal unstructured finite element grids in two and three dimensions, International Journal for Numerical Methods in Fluids, 14 (7) (1992) 861–881.

    Article  MATH  Google Scholar 

  19. A. Gupta, A finite element for transition from a fine to a coarse grid, International Journal for Numerical Methods in Engineering, 12 (1) (1978) 35–45.

    Article  MATH  Google Scholar 

  20. Y.-S. Cho and S. Im, MLS-based variable-node elements compatible with quadratic interpolation. Part I: formulation and application for non-matching meshes, International Journal for Numerical Methods in Engineering, 65 (4) (2006) 494–516.

    Article  MATH  Google Scholar 

  21. L. Demkowicz, Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1 One and Two Dimensional Elliptic and Maxwell problems, Chapman & Hall/CRC, Boca Raton (2006).

    Book  Google Scholar 

  22. N. Sukumar, Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons, Computer Methods in Applied Mechanics and Engineering, 263 (2013) 27–41.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Rand, A. Gillette and C. Bajaj, Quadratic serendipity finite elements on polygons using generalized barycentric coordinates, Mathematics of Computation, 83 (2014) 2691–2716.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Wu, X. Peng, W. Zhang and S. Bordas, The virtual node polygonal element method for nonlinear thermal analysis with application to hybrid laser welding, International Journal of Heat and Mass Transfer, 67 (2013) 1247–1254.

    Article  Google Scholar 

  25. J. Oden, C. Duarte and O. Zienkiewicz, A new cloud-based hp finite element method, Computer Methods in Applied Mechanics and Engineering, 153 (1) (1998) 117–126.

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Babuska and J. M. Melenk, The partition of unity finite element method, International Journal for Numerical Methods in Engineering, 40 (4) (1997) 727–758.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Duarte, I. Babuška and J. Oden, Generalized finite element methods for three-dimensional structural mechanics problems, Computers & Structures, 77 (2) (2000) 215–232.

    Article  MathSciNet  Google Scholar 

  28. R. E. Bank, A. H. Sherman and A. Weiser, Some refinement algorithms and data structures for regular local mesh refinement, Scientific Computing, Applications of Mathematics and Computing to the Physical Sciences, 1 (1983) 3–17.

    MathSciNet  Google Scholar 

  29. Z. Shi and X. Zhao, Error reduction of the adaptive conforming and nonconforming finite element methods with red–green refinement, Numerische Mathematik, 123 (3) (2013) 553–584.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Demkowicz, J. T. Oden, W. Rachowicz and O. Hardy, Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure, Computer Methods in Applied Mechanics and Engineering, 77 (1-2) (1989) 79–112.

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Hansbo, C. Lovadina, I. Perugia and G. Sangalli, A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes, Numerische Mathematik, 100 (1) (2005) 91–115.

    Article  MATH  MathSciNet  Google Scholar 

  32. L.-y. Li and P. Bettess, Adaptive finite element methods: a review, Applied Mechanics Reviews, 50 (10) (1997) 581–591.

    Article  Google Scholar 

  33. W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Springer (2003).

    Google Scholar 

  34. L. Demkowicz, W. Rachowicz and P. Devloo, A fully automatic hp-adaptivity, Journal of Scientific Computing, 17 (1-4) (2002) 117–142.

    Article  MATH  MathSciNet  Google Scholar 

  35. E. Siili, P. Houston and C. Schwab, hp-Finite element methods for hyperbolic problems, The Mathematics of Finite Elements and Applications X. MAFELAP (1999) 143–162.

    Google Scholar 

  36. A. Byfut and A. Schröder, hp-adaptive extended finite element method, International Journal for Numerical Methods in Engineering, 89 (11) (2012) 1392–1418.

    Article  MATH  MathSciNet  Google Scholar 

  37. S. T. Babuška, I. K. Copps, S. K. Gangaraj and C. S. Upadhyay, A-posteriori error estimation for finite element and generalized finite element method, The University of Texas at Austin (1998).

    Google Scholar 

  38. C. Talischi, G. H. Paulino, A. Pereira and I. F. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Structural and Multidisciplinary Optimization, 45 (3) (2012) 309–328.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. Timoshenko, Theory of elasticity, McGraw-Hill, New York (1987).

    Google Scholar 

  40. M. Meyer, A. Barr, H. Lee and M. Desbrun, Generalized barycentric coordinates on irregular polygons, Journal of Graphics Tools, 7 (1) (2002) 13–22.

    Article  MATH  Google Scholar 

  41. N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal finite element interpolants, Archives of Computational Methods in Engineering, 13 (1) (2006) 129–163.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Tabarraei and N. Sukumar, Application of polygonal finite elements in linear elasticity, International Journal of Computational Methods, 3 (4) (2006) 503–520.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. A. Szabo and I. Babuška, Finite element analysis, John Wiley & Sons, New York (1991).

    MATH  Google Scholar 

  44. F. B. Barros, S. P. B. Proença and C. S. de Barcellos, On error estimator and p-adaptivity in the generalized finite element method, International Journal for Numerical Methods in Engineering, 60 (14) (2004) 2373–2398.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Chai Lee.

Additional information

Recommended by Associate Editor Gang-Won Jang

Byung Chai Lee received B.S. degree (1977) of mechanical engineering from Seoul National University, Korea and Ph. D. (1984) of mechanical engineering from Korea Advanced Institute of Science and Technology (KAIST), Korea. He is currently a professor at the department of mechanical engineering in KAIST. His areas of interest are finite element method and structural optimization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.C., Lee, B.C. hp-adaptive finite element method for linear elasticity using higher-order virtual node method. J Mech Sci Technol 29, 4299–4312 (2015). https://doi.org/10.1007/s12206-015-0927-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0927-y

Keywords

Navigation