Skip to main content
Log in

Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integro-ordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gunko, Small but strong a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44 (9) (2006) 1624–1652.

    Article  Google Scholar 

  2. J. P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 79 (7) (1997) 1297.

    Article  Google Scholar 

  3. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit and L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A, 69 (3) (1999) 255–260.

    Article  Google Scholar 

  4. Q. Wang and V. K. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Mater. Struct., 15 (2) (2006) 659.

    Article  Google Scholar 

  5. J. N. Reddy and S. D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103 (2) (2008) 023511.

    Article  Google Scholar 

  6. A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay and L. Boumia, The thermal effect on vibration of singlewalled carbon nanotubes using nonlocal Timoshenko beam theory, J. Phys. D Appl. Phys., 41 (22) (2008) 225404.

    Article  Google Scholar 

  7. K. Kiani, Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field, J. Phys. Chem. Solids, 75 (1) (2014) 15–22.

    Article  MathSciNet  Google Scholar 

  8. K. Kiani, Nonlocal continuous models for forced vibration analysis of two-and three-dimensional ensembles of singlewalled carbon nanotubes, Physica E, 60 (2014) 229–245.

    Article  Google Scholar 

  9. K. Kiani, In-and out-of-plane dynamic flexural behaviors of two-dimensional ensembles of vertically aligned singlewalled carbon nanotubes, Physica B, 449 (2014) 164–180.

    Article  Google Scholar 

  10. K. Kiani, Nonlocal discrete and continuous modeling of free vibration of stocky ensembles of single-walled carbon nanotubes, Curr. Appl. Phys., 14 (8) (2014) 1116–1139.

    Article  Google Scholar 

  11. L. J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, J. Appl. Phys., 94 (11) (2003) 7281–7287.

    Article  Google Scholar 

  12. Q. Wang, V. K. Varadan and S. T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Phys. Lett. A, 357 (2) (2006) 130–135.

    Article  Google Scholar 

  13. D. Kumar, C. Heinrich and A. M. Waas, Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories, J. Appl. Phys., 103 (7) (2008) 073521.

    Article  Google Scholar 

  14. A. Tounsi, S. Benguediab, E. A. Bedia, A. Semmah and M. Zidour, Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes, Adv. Nano Res., 1 (1) (2013) 1–11.

    Article  Google Scholar 

  15. K. Kiani, Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models, Acta Mech., 225 (12) (2014) 3569–3589.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Benguediab, A. Tounsi, M. Zidour and A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes, Compos. Part BEng., 57 (2014) 21–24.

    Article  Google Scholar 

  17. A. Semmah, A. Tounsi, M. Zidour, H. Heireche and M. Naceri, Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory, Fullerenes, Nanotubes and Carbon Nanostructures, 23 (2014) 518–522.

    Article  Google Scholar 

  18. H. L. Lee and W. J. Chang, Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, J. Appl. Phys., 103 (2) (2008) 024302.

    Article  Google Scholar 

  19. L. Wang, Wave propagation of fluid-conveying singlewalled carbon nanotubes via gradient elasticity theory, Comp. Mater. Sci., 49 (4) (2010) 761–766.

    Article  Google Scholar 

  20. Y. D. Kuang, X. Q. He, C. Y. Chen and G. Q. Li, Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid, Comp. Mater. Sci., 45 (4) (2009) 875–880.

    Article  Google Scholar 

  21. K. Kiani, Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbonnanotubes, Comput. Method Appl. M., 276 (2014) 691–723.

    Article  MathSciNet  Google Scholar 

  22. Y. G. Hu, K. M. Liew, Q. Wang, X. Q. He and B. I. Yakobson, Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes, J. Mech. Phys. Solids, 56 (12) (2008) 3475–3485.

    Article  MATH  Google Scholar 

  23. H. Heireche, A. Tounsi, A. Benzair, M. Maachou and E. A. Adda Bedia, Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity, Physica E, 40 (8) (2008) 2791–2799.

    Article  Google Scholar 

  24. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., 98 (12) (2005) 124301.

    Article  Google Scholar 

  25. J. Yang, L. L. Ke and S. Kitipornchai, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E, 42 (5) (2010) 1727–1735.

    Article  Google Scholar 

  26. K. Kiani, Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models, Physica E, 45 (2012) 86–96.

    Article  Google Scholar 

  27. A. Farrokhabadi, N. Abadian, F. Kanjouri and M. Abadyan, Casimir force-induced instability in freestanding nanotweezers and nanoactuators made of cylindrical nanowires, Int. J. Modern Physics B, 28 (2014) 1450129.

    Article  MATH  Google Scholar 

  28. A. Farrokhabadi, N. Abadian, R. Rach and M. Abadyan, Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section, Physica E, 63 (2014) 67–80.

    Article  Google Scholar 

  29. C. Q. Ru, Elastic buckling of single-walled carbon nanotube ropes under high pressure, Phys. Rev. B, 62 (15) (2000) 10405.

    Article  Google Scholar 

  30. T. Chang, G. Li and X. Guo, Elastic axial buckling of carbon nanotubes via a molecular mechanics model, Carbon, 43 (2) (2005) 287–294.

    Article  Google Scholar 

  31. G. Cao and X. Chen, Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method, Phys. Rev. B, 73 (15) (2006) 155435.

    Article  Google Scholar 

  32. Q. Wang, W.H. Duan, K. M. Liew and X. Q. He, Inelastic buckling of carbon nanotubes, Appl. phys. Lett., 90 (3) (2007) 033110.

    Article  Google Scholar 

  33. C. H. Ke, N. Pugno, B. Peng and H. D. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices, J. Mech. Phys. Solids, 53 (6) (2005) 1314–1333.

    Article  MATH  Google Scholar 

  34. C. Ke, H. D. Espinosa and N. Pugno, Numerical analysis of nanotube based NEMS devices-Part II: Role of finite kinematics, stretching and charge concentrations, J. Appl. Mech., 72 (5) (2005) 726–731.

    Article  MATH  Google Scholar 

  35. A. Koochi, N. Fazli and R. Rach, Modeling the pull-in instability of the CNT-based probe/actuator under the Coulomb force and the van der Waals attraction, Lat. Am. J. Solids Stru., 11 (8) (2014) 1315–1328.

    Article  Google Scholar 

  36. A. Farrokhabadi, A. Koochi and M. Abadyan, Modeling the instability of CNT tweezers using a continuum model, Microsyst. Technol., 20 (2) (2014) 291–302.

    Article  Google Scholar 

  37. K. Kiani, Vibration analysis of two orthogonal slender single-walled carbon nanotubes with a new insight into continuum-based modeling of van der Waals forces, Compos. Part B-Eng. (2014) DOI: 10.1016/j.compositesb.2014.12.025.

    Google Scholar 

  38. K. Kiani, Dynamic interactions of doubly orthogonal stocky single-walled carbon nanotubes, Compos. Struct. (2014) DOI: 10.1016/j.compstruct.2014.12.057.

    Google Scholar 

  39. A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. of Engin. Sci., 10 (5) (1972) 425–435.

    Article  MATH  Google Scholar 

  40. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (9) (1983) 4703–4710.

    Article  Google Scholar 

  41. S. S. Gupta and R. C. Batra, Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes, Comput. Mater. Sci., 43 (4) (2008) 715–723.

    Article  Google Scholar 

  42. H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim and E. A. A. Bedia, New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates, J. Eng. Mech., 140 (2) (2014) 374–383.

    Article  Google Scholar 

  43. M. S. A. Houari, A. Tounsi and O. A. Beg, Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory, Int. J. Mech. Sci., 76 (2013) 102–111.

    Article  Google Scholar 

  44. K. Kiani, Nanoparticle delivery via stocky single-walled carbon nanotubes: A nonlinear-nonlocal continuum-based scrutiny, Compos. Struct., 116 (2014) 254–272.

    Article  Google Scholar 

  45. K. Kiani, H. Ghaffari and B. Mehri, Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects, Curr. Appl. Phys., 13 (1) (2013) 107–120.

    Article  Google Scholar 

  46. J. Peddieson, G. R. Buchanan and R. P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41 (3) (2003) 305–312.

    Article  Google Scholar 

  47. W. H. Duan, C. M. Wang and Y. Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, J. Appl. Phys., 101 (2) (2007) 024305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Additional information

Recommended by Associate Editor Jun-Sik Kim

Keivan Kiani was born in Hamedan of Iran on 1979. He got a B.Sc. degree in civil engineering from Isfahan University of Technology on 1999. Subsequently, he was awarded M.Sc and Ph.D. degrees with major in structural engineering from Sharif University of Technology in 2002 and 2010, respectively. His current research is focus on the wave propagation in, vibrations and dynamic instability of nanostructures using advanced elasticity theories. To date, he has published more than 60 articles in the peer-reviewed journals of mathematics, physics and mechanics, and he has been the reviewer of more than 40 ISI journals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, K. Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory. J Mech Sci Technol 29, 4267–4272 (2015). https://doi.org/10.1007/s12206-015-0923-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0923-2

Keywords

Navigation