Skip to main content
Log in

Moving long baseline positioning algorithm with uncertain sound speed

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a Moving long baseline (MLBL) positioning algorithm for the underwater target considering the uncertain underwater sound speed. First, the positioning and the sound speed models are established. To tackle the uncertain sound speed, a Uncertain least squares (ULS) positioning algorithm is applied to estimate the target position and the sound speed. Then it is essentially shown that four mobile buoys are necessarily (at least) required to locate the target. Further, it is found that under a singularity scenario in which the ranges between the target and each of the mobile buoys are equal, there is no solution to the positioning according to the classical geometrical equations. In order to solve this singularity problem, an ULS-based Unscented Kalman filter (UKF) algorithm is proposed to obtain the estimated solution. Simulation results illustrate the effectiveness of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moradi, J. Rezazadeh and A. S. Ismail, A reverse localization scheme for underwater acoustic sensor networks, Sensors, 12 (4) (2012) 4352–4380.

    Article  Google Scholar 

  2. L. Stutters, H. Liu, C. Tiltman and D. J. Brown, Navigation technologies for autonomous underwater vehicles, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38 (4) (2008) 581–589.

    Article  Google Scholar 

  3. D. R. Yoerger, M. Jakuba, A. M. Bradley and B. Bingham, Techniques for deep sea near bottom survey using an autonomous underwater vehicle, The International Journal of Robotics Research, 26 (1) (2007) 41–54.

    Article  Google Scholar 

  4. A. D. Waite, Sonar for practicing engineers, John Wiley and Sons, New York, USA (2003).

    Google Scholar 

  5. M. Erol-Kantarci, H. T. Mouftah and S. Oktug, A survey of architectures and localization techniques for underwater acoustic sensor networks, Communications Surveys and Tutorials, 13 (3) (2011) 487–502.

    Article  Google Scholar 

  6. P. A. Miller, J. A. Farrell, Y. Zhao and V. Djapic, Autonomous underwater vehicle navigation, IEEE Journal of Oceanic Engineering, 35 (3) (2010) 663–678.

    Article  Google Scholar 

  7. K. Vickery, Acoustic positioning systems, A practical overview of current systems, Proc. of the Workshop on Autonomous Underwater Vehicles, Fort Lauderdale, FL, USA (1998) 5–17.

    Google Scholar 

  8. F. Arrichiello, H. K. Heidarsson and G. Sukhatme, Opportunistic localization of underwater robots using drifters and boats, Proc. of IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA (2012) 5307–5314.

    Google Scholar 

  9. J. Curcio, J. Leonard, J. Vaganay, A. Patrikalakis, A. Bahr, D. Battle and M. Grund, Experiments in moving baseline navigation using autonomous surface craft, Proc. of MTS/ IEEE OCEANS, Washington, DC, USA (2005) 730–735.

    Google Scholar 

  10. A. Folk, B. Armstrong, E. Wolbrecht, H. F. Grip, M. Anderson and D. Edwards, Autonomous underwater vehicle navigation using moving baseline on a target ship, Proc. of MTS/IEEE OCEANS, Seattle, WA, USA (2010).

    Google Scholar 

  11. A. Bahr, J. J. Leonard and M. F. Fallon, Cooperative localization for autonomous underwater vehicles, The International Journal of Robotics Research, 28 (6) (2009) 714–728.

    Article  Google Scholar 

  12. A. Bahr, M. R. Walter and J. J. Leonard, Consistent cooperative localization, Proc. of International Conference on Robotics and Automation, Kobe, Japan (2009) 3415–3422.

    Google Scholar 

  13. M. F. Fallon, G. Papadopoulos and J. J. Leonard, A measurement distribution framework for cooperative navigation using multiple AUVs, Proc. of International Conference on Robotics and Automation, Anchorage, AK, USA (2010) 4256–4263.

    Google Scholar 

  14. A. N. Bishop, B. Fidan, B. D. Anderson, K. Dogançay and P. N. Pathirana, Optimality analysis of sensor-target localization geometries, Automatica, 46 (3) (2010) 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Yan, W. Chen, R. Cui and H. Li, Optimal distance between mobile buoy and target for moving long baseline positioning system, Journal of Navigation, available on CJO2015, doi:10.1017/S0373463315000077.

  16. A. Alcocer, P. Oliveira and A. Pascoal, Study and implementation of an EKF GIB-based underwater positioning system, Control Engineering Practice, 15 (6) (2007) 689–701.

    Article  Google Scholar 

  17. J. C. Kinsey, R. M. Eustice and L. L. Whitcomb, A survey of underwater vehicle navigation: Recent advances and new challenges, Proc. of the IFAC Conference of Manoeuvring and Control of Marine Craft, Lisbon, Portugal (2006).

    Google Scholar 

  18. P. Batista, C. Silvestre and P. Oliveira, Sensor-based long baseline navigation: observability analysis and filter design, Asian Journal of Control, 16 (4) (2014) 974–994.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Shi and H. Fang, Kalman filter-based identification for systems with randomly missing measurements in a network environment, International Journal of Control, 83 (3) (2010) 538–551.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Fox, W. Burgard, H. Kruppa and S. Thrun, A probabilistic approach to collaborative multi-robot localization, Autonomous Robots, 8 (3) (2000) 325–344.

    Article  Google Scholar 

  21. A. Rusdinar, J. Kim, J. Lee and S. Kim, Implementation of real-time positioning system using extended Kalman filter and artificial landmark on ceiling, Journal of Mechanical Science and Technology, 26 (3) (2012) 949–958.

    Article  Google Scholar 

  22. M. F. Fallon, G. Papadopoulos, J. J. Leonard and N. M. Patrikalakis, Cooperative AUV navigation using a single maneuvering surface craft, The International Journal of Robotics Research, 29 (12) (2010) 1461–1474.

    Article  Google Scholar 

  23. H. Medwin, Speed of sound in water: A simple equation for realistic parameters, The Journal of the Acoustical Society of America, 58 (6) (1975) 1318–1319.

    Article  Google Scholar 

  24. F. B. Jensen, W. A. Kuperman, M. B. Porter and H. Schmidt, Computational Ocean Acoustics, Second Ed, Springer, New York, USA (2011).

    Book  MATH  Google Scholar 

  25. S. Jamshidi and N. A. Bakar, An analysis of sound speed in seawater using CTD data, Journal of Applied Sciences, 10 (2) (2010) 132–138.

    Article  Google Scholar 

  26. J. L. Spiesberger and K. Metzger, New estimates of sound speed in water, The Journal of the Acoustical Society of America, 89 (4) (1991) 1697–1700.

    Article  Google Scholar 

  27. M. S. Ballard, G. V. Frisk and K. M. Becker, Estimates of the temporal and spatial variability of ocean sound speed on the New Jersey shelf, The Journal of the Acoustical Society of America, 135 (6) (2014) 3316–3326.

    Article  Google Scholar 

  28. H. Shiba, Layered model sound speed profile estimation. Proc. of MTS/IEEE OCEANS, Bergen, Norway (2013) 1–7.

    Google Scholar 

  29. S. G. Krantz and H. R. Parks, The implicit function theorem: history, theory, and applications, Springer Science and Business Media, Boston, USA (2002).

    Google Scholar 

  30. T. I. Fossen, Guidance and control of ocean vehicles, Wiley, New York, USA (1994).

    Google Scholar 

  31. S. S. Haykin, Kalman filtering and neural networks, Wiley, New York, USA (2001).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Recommended by Associate Editor Yang Shi

Weisheng Yan is a professor at the School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China. His research interests include guidance and control of underwater vehicles, fault detection and fault-tolerant control.

Wei Chen received the B.S. and M.S. degrees from the Northwestern Polytechnical University, Xi’an, China, in 2010 and 2013, respectively. He is a Ph.D. candidate in the Northwestern Polytechnical University. His research interests include positioning of underwater vehicles, simultaneous input and state estimation.

Rongxin Cui is an associate professor at the School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China. His research interests include cooperative control of multiagent systems, path planning, control theory and applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Chen, W. & Cui, R. Moving long baseline positioning algorithm with uncertain sound speed. J Mech Sci Technol 29, 3995–4002 (2015). https://doi.org/10.1007/s12206-015-0845-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0845-z

Keywords

Navigation