Skip to main content
Log in

Extension of silo discharge model based on discrete element method

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Silos are containers used by almost all fields of industry for storing granular materials and generally classified in two types: mass flow and funnel flow. One of the most important design parameter of these equipment is the discharge rate which depends on the flow mode. There are high numbers of analytical and empirical models used for determine this parameter, however none of them is suitable for both flow modes; moreover the accuracy of mass flow models is not acceptable. Recently a few numerical discharge models are made for certain geometries; but the applicability of these models in case of different flow modes was not examined. Aim of our work is the creation of an experimentally validated numerical discharge model based on others work and examination of this in term of different flow modes. We prove that our modified model is suitable for determine silos discharge rate independently from flow mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beverloo, The flow of granular solids through orifices, Chemical Engineering Science, 15 (262) (1961) 260–269.

    Article  Google Scholar 

  2. H. A. Janssen, Getreidedruck in Silozellen, Z. Ver. Dt. Ing., 39 (35) (1895) 1045–1049.

    Google Scholar 

  3. A. W. Jenike, A theory of flow of particulate solids in converging and diverging channels based on a conical yield function, Powder Technology, 50 (3) (1987) 229–236.

    Article  Google Scholar 

  4. J. R. Johanson, Method of calculating rate of discharge from hoppers and bins, SME of AIME, Transactions, 232 (1965) 69–80.

    Google Scholar 

  5. A. W. Jenike, J. R. Johansson and J. W. Carson, Bin loads–part 2: Concepts ASME, Journal of Engineering for Industry, 95 (1) (1973) 1–5.

    Article  Google Scholar 

  6. M. Ostendorf and J. Schwedes, Application of particle image velocimetry for velocity measurements during silo discharge, Powder Technology, 158 (2005) 69–75.

    Article  Google Scholar 

  7. I. Keppler, Arching in silos, a new model, Bulletin of the Szent István University, Gödöllo, 1 (2009) 331–342.

    Google Scholar 

  8. I. Oldal, I. Keppler, B. Csizmadia and L. Fenyvesi, Outflow properties of silos: The effect of arching, Advanced Powder Technology, 23 (3) (2012) 290–297.

    Article  Google Scholar 

  9. E. Hagen, Druck und Bewegung des trockenen Sandes, Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preußischen Akademie der Wissenschaften zu Berlin (1852) 35–42.

    Google Scholar 

  10. British Standard Summaries, BS5502, Part 74: 1991, Building and Structures for Agriculture, Design and Construction of Bins & Silos for Combinable Crops. (1991).

  11. A. Zanker, Estimating the flow of solids through openings, Process Engineering (July) (1975) 66–67.

    Google Scholar 

  12. L. V. Gjacev and H. Keller, Grundlagen einer Theorie zum Schüttgutausfluss aus Bunkern und einige Ergebnisse ihrer experimentellen Überprüfung, Wissenschaftliche Zeitschrift der Hochschule für Architektur und Bauwesen Weimar, 30 (1984) 269–272.

    Google Scholar 

  13. A. J. Carleton, The effect of fluid-drag forces on the discharge of free flowing solids from hoppers, Powder Technology, 6 (2) (1972) 91–96.

    Article  Google Scholar 

  14. C. Gonzalez-Montanello, A. Ramírez, E. Gallego and F. Ayuga, Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos, Chemical Engineering Science, 66 (21) (2011) 5116–5126.

    Article  Google Scholar 

  15. C. Gonzalez-Montanello, A. Ramírez, J. M. Fuentes and F. Ayuga, Numerical effects derived from en masse filling of agricultural silos in DEM simulations, Computers and Electronics in Agriculture, 81 (2012) 113–123.

    Article  Google Scholar 

  16. C. J. Coetzee and D. N. J. Els, Calibration of discrete element parameters and the modeling of silo discharge and bucket filling, Computers and Electronics in Agriculture, 65 (2) (2009) 198–212.

    Article  Google Scholar 

  17. P. A. Langston, U. Tüzün and D. M. Heyes, Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions, Chemical Engineering Science, 50 (6) (1995) 967–987.

    Article  Google Scholar 

  18. R. Balevicius, R. Kacianauskas, Z. Mróz and I. Sielamowicz, Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes, Advanced Powder Technology, 22 (2) (2011) 226–235.

    Article  Google Scholar 

  19. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren and B. C. Hancock, Predicting the flow mode from hoppers using the discrete element method, Powder Technology, 195 (1) (2009) 1–10.

    Article  Google Scholar 

  20. P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29 (1) (1979) 47–65.

    Article  Google Scholar 

  21. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan and B. C. Hancock, Granular segregation in discharging cylindrical hoppers: A discrete element and experimental study, Chemical Engineering Science, 62 (22) (2007) 6423–6439.

    Article  Google Scholar 

  22. S. Okan and A. N. Ali, Numerical simulation of rock cutting using the discrete element method, International Journal of Rock Mechanics and Mining Sciences, 48 (3) (2011) 434–442.

    Article  Google Scholar 

  23. C. Yuan, D. Zongquan and L. Bing, Numerical simulations of motion behaviors of pan mechanism in a cooking robot with granular cuisine, Journal of Mechanical Science and Technology 25 (3) (2011) 803–808.

    Article  Google Scholar 

  24. P. Junyoung and K. Namcheol, Applications of fiber models based on discrete element method to string vibration, Journal of Mechanical Science and Technology, 23 (2009) 372–280.

    Article  Google Scholar 

  25. I. Keppler, L. Kocsis, I. Oldal, I. Farkas and A. Csatár, Grain velocity distribution in a mixed flow dryer, Advanced Powder Technology, 23 (6) (2012) 824–832.

    Article  Google Scholar 

  26. K. Yu-Man, A Granular motion simulation by discrete element method, Journal of Mechanical Science and Technology, 22 (2008) 812–818.

    Article  Google Scholar 

  27. A. Anand, J. S. Curtis, C. R. Wassgren, B. C. Hancock and W. R. Ketterhagen, Predicting discharge dynamics from a rectangular hopper using discrete element method (DEM), Chemical Engineering Science, 63 (24) (2008) 5821–5830.

    Article  Google Scholar 

  28. S. C. Yang and S. S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technology, 120 (3) (2001) 244–255.

    Article  Google Scholar 

  29. F. Salehpour-Oskouyi and M. Homayoun Sadeghi, Threedimensional modeling of system of vibrating spherical balls using discrete element method, Journal of Mechanical Science and Technology, 28 (1) (2014) 53–60.

    Article  Google Scholar 

  30. S. Masson and J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technology, 109 (1–3) (2000) 164–178.

    Article  Google Scholar 

  31. I. Keppler, Failure analysis of pebble bed reactors during earthquake by discrete element method, Nuclear Engineering and Design, 258 (2013) 102–106.

    Article  Google Scholar 

  32. A. O. Raji and J. F. Favier, Model for deformation in agricultural and food particular materials under bulk compressive loading using discrete element method I; Theory, model development and validation, Journal of Agricultural Engineering Research, 64 (3) (2004) 359–371.

    Google Scholar 

  33. Y. Tsuji, T. Tanaka and T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology, 71 (3) (1992) 259–270.

    Article  Google Scholar 

  34. G. Enstand, On the theory of arching in mass flow hoppers, Chemical Engineering Science, 30 (10) (1975) 1273–1283.

    Article  Google Scholar 

  35. J. Wu, J. Binbo, J. Chen and Y. Yang, Multi-scale study of particle flow in silos, Advanced Powder Technology, 20 (1) (2009) 62–73.

    Article  Google Scholar 

  36. T. J. Goda and F. Ebert, Three-dimensional discrete element simulations in hoppers and silos, Powder Technology, 158 (1–3) (2005) 58–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Safranyik.

Additional information

Recommended by Associate Editor Gang-Won Jang

István Oldal (1977) received his M.S. degree of mechanical engineering in 2001, Ph.D. degree in 2007 from Szent István University (SZIU), Gödöllo, Hungary. He is now an associate professor at SZIU. The topic of his research is mechanics of granular materials.

Ferenc Safranyik (1988) received his B.S. and M.S. degree of mechanical engineering from Szent István University (SZIU), Gödöllo, Hungary in 2011 and 2013, respectively. He is now a Ph.D. student at SZIU, and he works in Hungarian Institute of Agricultural Engineering as research engineer. The topics of his dissertation are modeling of agricultural granular materials, focused on silos and discrete element modeling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oldal, I., Safranyik, F. Extension of silo discharge model based on discrete element method. J Mech Sci Technol 29, 3789–3796 (2015). https://doi.org/10.1007/s12206-015-0825-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0825-3

Keywords

Navigation