Skip to main content
Log in

Numerical evaluation of the coefficients of thermal expansion of fibers in composite materials using a lamina-scale cost function with quasi-analytical gradients

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this work, the coefficients of thermal expansion (CTEs) of fibers in composite materials that contain microstructures are numerically evaluated using a lamina-scale cost function with quasi-analytical gradients. To consider the effects of fiber arrangements and local defects, such as interface debonding and voids, a variety of representative volume elements are modeled with a number of finite element meshes. Then, the CTEs of fibers are evaluated by minimizing a lamina-scale cost function that represents the difference between the measured CTEs and the computed CTEs by means of a computational homogenization scheme for the composite lamina. The descent direction of the cost function is obtained using quasi-analytical gradients that take partial derivatives from prediction models, such as the Schapery model and Hashin model defined in an explicit manner, which accelerates the minimization procedure. To verify the performance of the proposed scheme in terms of accuracy and efficiency, the CTEs of constituents calculated using the proposed scheme in a unidirectional composite lamina are compared with experimental values reported in the literature. Furthermore, the convergence behavior of the proposed scheme with quasi-analytical gradients is also investigated and compared with other minimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Farinelli, H.-I. Kim and J.-H. Han, Feasibility study to actively compensate deformations of composite structure in a space environment, Int. J. Aeronaut. Space Sci., 13 (2) (2012) 221–228.

    Google Scholar 

  2. I. M. Daniel and O. Ishai, Engineering mechanics of composite materials, Oxford University Press, New York, USA (1994).

    Google Scholar 

  3. R. A. Schapery, Thermal expansion coefficients of composite materials based on energy principles, J. Compos. Mater., 2 (3) (1968) 380–404.

    Article  Google Scholar 

  4. E. Sideridis, Thermal expansion coefficients of fiber composites defined by the concept of the interphase, Compos. Sci. Technol., 51 (3) (1994) 301–317.

    Article  MathSciNet  Google Scholar 

  5. J. C. Halpin, Effects of environmental factors on composite materials, Air Force Material Laboratory Technical Report, AFML-TR-67-423 (1969).

    Google Scholar 

  6. T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21 (5) (1973) 571–574.

    Article  Google Scholar 

  7. T.-W. Chou, S. Nomura and M. Taya, A self-consistent approach to the elastic stiffness of short-fiber composites, J. Compos. Mater., 14 (3) (1980) 178–188.

    Article  Google Scholar 

  8. Z. H. Karadeniz and D. Kumlutas, A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials, Compos. Struct., 78 (1) (2007) 1–10.

    Article  Google Scholar 

  9. S. Li, N. Warrior, Z. Zou and F. Almaskari, A unit cell for FE analysis of materials with the microstructure of a staggered pattern, Compos. Part A: Appl. Sci. Manuf., 42 (7) (2011) 801–811.

    Article  Google Scholar 

  10. S. Li, Boundary conditions for unit cells from periodic microstructures and their implications, Compos. Sci. Technol., 68 (9) (2008) 1962–1974.

    Article  Google Scholar 

  11. R. Islam, S. G. Sjölind and A. Pramila, Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites, J. Compos. Mater., 35 (19) (2001) 1762–1776.

    Google Scholar 

  12. W. Yu and T. Tang, A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials, Int. J. Solids Struct., 44 (22–23) (2007) 7510–7525.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. P. Choi, D. Sohn, C. H. Woo, S.-H. Lee, S. H. Ahn and Y.-S. Cho, Qualitative verification of the dispersion level in nano-composite and its application to YD-128/MWCNT composite to assess the wear characteristics with respect to the dispersion level, J. Mech. Sci. Technol., 27 (10) (2013) 3131–3138.

    Article  Google Scholar 

  14. X. Liu, R. Wang, Z. Wu and W. Liu, The effect of triangleshape carbon fiber on the flexural properties of the carbon fiber reinforced plastics, Mater. Lett., 73 (2012) 21–23.

    Article  Google Scholar 

  15. S.-J. Park, M.-K. Seo and H.-B. Shim, Effect of fiber shapes on physical characteristics of non-circular carbon fibersreinforced composites, Mater. Sci. Eng. A, 352 (1–2) (2003) 34–39.

    Article  Google Scholar 

  16. H. G. Kim, Effects of fiber aspect ratio evaluated by elastic analysis in discontinuous composites, J. Mech. Sci. Technol., 22 (3) (2008) 411–419.

    Article  MATH  Google Scholar 

  17. N. Kuentzer, P. Simacek, S. G. Advani and S. Walsh, Correlation of void distribution to VARTM manufacturing techniques, Compos. Part A: Appl. Sci. Manuf., 38 (3) (2007) 802–813.

    Article  Google Scholar 

  18. H. Huang and R. Talreja, Effects of void geometry on elastic properties of unidirectional fiber reinforced composites, Compos. Sci. Technol., 65 (13) (2005) 1964–1981.

    Article  Google Scholar 

  19. R. Guo, H. Shi and Z. Yao, Modeling of interfacial debonding crack in particle reinforced composites using Voronoi cell finite element method, Comput. Mech., 32 (1–2) (2003) 52–59.

    Article  MATH  Google Scholar 

  20. T. Rabczuk and T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., 61 (13) (2004) 2316–2343.

    Article  MATH  Google Scholar 

  21. Y. Huang, K. K. Jin and S. K. Ha, Effects of fiber arrangement on mechanical behavior of unidirectional composites, J. Compos. Mater., 42 (18) (2008) 1851–1871.

    Article  Google Scholar 

  22. P. Rupnowski, M. Gentz, J. K. Sutter and M. Kumosa, An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers, Compos. Part A: Appl. Sci. Manuf., 36 (3) (2005) 327–338.

    Article  Google Scholar 

  23. R. Kulkarni and O. Ochoa, Transverse and longitudinal CTE measurements of carbon fibers and their impact on interfacial residual stresses in composites, J. Compos. Mater., 40 (8) (2006) 733–754.

    Article  Google Scholar 

  24. C. Pradere, J. C. Batsale, J. M. Goyheneche, R. Pailler and S. Dilhaire, Estimation of the transverse coefficient of thermal expansion on carbon fibers at very high temperature, Inverse Probl. Sci. Eng., 15 (1) (2007) 77–89.

    Article  MATH  Google Scholar 

  25. C. Pradere and C. Sauder, Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500K), Carbon, 46 (14) (2008) 1874–1884.

    Article  Google Scholar 

  26. J.-S. Ban, K.-W. Lee, S.-J. Kim and K.-Z. Cho, A study on the microstructural property and thermal property of Ti-alloys without Al as biomaterials, J. Mech. Sci. Technol., 22 (8) (2008) 1447–1450.

    Article  Google Scholar 

  27. S. Sockalingam and G. Nilakantan, Fiber-matrix interface characterization through the microbond test, Int. J. Aeronaut. Space Sci., 13 (3) (2012) 282–295.

    Google Scholar 

  28. J. Arora, Introduction to optimum design, Academic Press, New York, USA (2004).

    Google Scholar 

  29. E. Kreyszig, Advanced engineering mathematics, 10th edition, John Wiley & Sons, New York, USA (2011).

    MATH  Google Scholar 

  30. Z. Hashin, Analysis of properties of fiber composites with anisotropic constituents, J. Appl. Mech., 46 (3) (1979) 543–550.

    Article  MATH  Google Scholar 

  31. J. R. Strife and K. M. Prewo, The thermal expansion behavior of unidirectional and bidirectional Kevlar/epoxy composites, J. Compos. Mater., 13 (4) (1979) 264–277.

    Article  Google Scholar 

  32. Matlab User’s Guide (R2012a), MathWorks (2012).

  33. Abaqus Analysis User’s Manual (6.10), Dassault Systèmes (2010).

  34. J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9 (1) (1998) 112–147.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. S. Kaddour, M. J. Hinton, P. A. Smith and S. Li, Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise, J. Compos. Mater., 47 (20–21) (2013) 2427–2442.

    Article  Google Scholar 

  36. T. D. Breitzman, Multiscale strain analysis, Ph.D. Dissertation, Louisiana State University (2005).

    Google Scholar 

  37. H. Miyagawa, T. Mase, C. Sato, E. Drown, L. T. Drzal and K. Ikegami, Comparison of experimental and theoretical transverse elastic modulus of carbon fibers, Carbon, 44 (10) (2006) 2002–2008.

    Article  Google Scholar 

  38. C. Sauder and J. Lamon, Prediction of elastic properties of carbon fibers and CVI matrices, Carbon, 43 (10) (2005) 2044–2053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwoo Sohn.

Additional information

Recommended by Associate Editor Kyeongsik Woo

Jae Hyuk Lim received his B.S. degree in Mechanical Engineering from Inha University, Korea in 2000. He received his M.S. and Ph.D. degrees in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST) in 2002 and 2006, respectively. He is currently a senior research engineer in the Satellite Mechanical Department, Korea Aerospace Research Institute. His research interests include finite element simulations, material modeling and characterization, and design and analysis of satellite structures.

Dongwoo Sohn received his B.S. degree from Hanyang University, Korea in 2006. He received his M.S. and Ph.D. degrees from the Korea Advanced Institute of Science and Technology (KAIST) in 2008 and 2011, respectively. He is currently an assistant professor in the Division of Mechanical Engineering, Korea Maritime and Ocean University. His research interests include numerical methods and computational mechanics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.H., Charpentier, JB. & Sohn, D. Numerical evaluation of the coefficients of thermal expansion of fibers in composite materials using a lamina-scale cost function with quasi-analytical gradients. J Mech Sci Technol 29, 1187–1197 (2015). https://doi.org/10.1007/s12206-015-0231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0231-x

Keywords

Navigation