Skip to main content
Log in

Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper, dynamic pull-in instability and free vibration characteristics of circular higher-order shear deformable nanoplates subjected to hydrostatic and electrostatic forces are studied including surface stress effect. For this purpose, Eringen’s nonlocal elasticity continuum in conjunction with the Gurtin-Murdoch elasticity theory is incorporated into the classical higher-order shear deformation plate theory to develop size-dependent plate model able to consider both of small scale and surface stress effects. The non-classical governing differential equations are then discretized along with simply supported and clamped edge supports by employing generalized differential quadrature (GDQ) method. To evaluate the size-dependent pull-in voltage of nanoplates, the hydrostatic-electrostatic actuation is assumed to be calculated by neglecting the fringing field effects and utilizing the parallel plate approximation. It is demonstrated that the pull-in instability occurs at lower voltages for nanoplates with higher values of nonlocal parameters. Moreover, it is found that surface stress effect can increase or decrease the pull-in voltage of nanoplates which depends on the sign of surface elastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Osterberg and S. D. Senturia, M-TEST a test chip for MEMS material property measurement using electrostatically actuated test structures, J. Microelectromechanical Syst., 6 (1997) 107–118.

    Article  Google Scholar 

  2. D. Bernstein, P. Guidotti and J. A. Pelesko, Mathematical analysis of an electrostatically actuated MEMS device, Proceedings of Model. Simu. Microsystems (2000) 489–492.

    Google Scholar 

  3. M. I. Younis, E. M. Abdel-Rahman and A. Nayfeh, A reduced-order model for electrically actuated microbeambased MEMS, J. Microelectromechanical Syst., 12 (2003) 672–680.

    Article  Google Scholar 

  4. R. C. Batra, M. Porfiri and D. Spinello, Electromechanical model of electrically actuated narrow microbeams, J. Microelectromechanical Syst., 15 (2006) 1175–1189.

    Article  Google Scholar 

  5. A. H. Nayfeh, M. I. Younis and E. M. Abdel-Rahman, Dynamic pull-in phenomenon in MEMS resonators, Nonlinear Dynamics, 48 (2007) 153–163.

    Article  MATH  Google Scholar 

  6. A. H. Nayfeh and M. I. Younis, Modeling and simulations of thermoelastic damping in microplates, J. Micromech. Microeng., 14 (2004) 1711–1717.

    Article  Google Scholar 

  7. X. P. Zhao, E. M. Abdel-Rahman and A. H. Nayfeh, A reduced-order model for electrically actuated microplates, J. Micromech. Microeng., 14 (2004) 900–906.

    Article  Google Scholar 

  8. A. Machauf, Y. Nemirovsky and U. Dinnar, A membrane micropump electrostatically actuated across the working fluid, J. Micromech. Microeng., 15 (2005) 2309–2316.

    Article  Google Scholar 

  9. S. Mukherjee, Z. P. Bao, M. Roman and N. Aubry, Nonlinear mechanics of MEMS plates with a total Lagrangian approach, Computers & Struct., 83 (2005) 758–768.

    Article  Google Scholar 

  10. R. C. Batra, M. Porfiri and D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force, Int. J. Solids Struct., 45 (2008) 3558–3583.

    Article  MATH  Google Scholar 

  11. P. C. P. Chao, C. W. Chiu and C. Y. Tsai, A novel method to predict the pull-in voltage in a closed form for microplates actuated by a distributed electrostatic force, J. Micromech. Microeng., 16 (2006) 986–998.

    Article  Google Scholar 

  12. J. H. Ko, J. Jeong, J. Choi and M. Cho, Quality factor in clamping loss of nano-cantilever resonators, Appl. Phys. Lett., 98 (2011) 171909.

    Article  Google Scholar 

  13. D. C. C. Lam and A. C. M. Chong, Indentation model and strain gradient plasticity law for glassy polymers, J. Mater. Research, 14 (1999) 3784–3788.

    Article  Google Scholar 

  14. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003) 1477–1508.

    Article  MATH  Google Scholar 

  15. A. W. McFarland and J. S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromech. Microeng., 15 (2005) 1060–1067.

    Article  Google Scholar 

  16. W. D. Nix, Mechanical properties of thin films, Metallurgical Transactions A-.Phys. Metallurgy Mater. Sci., 20 (1989) 2217–2245.

    Article  Google Scholar 

  17. N. A. Fleck, G. M. Muller, M. F. Ashby and J. W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica Et Materialia, 42 (1994) 475–487.

    Article  Google Scholar 

  18. W. J. Poole, M. F. Ashby and N. A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals, Scripta Materialia, 34 (1996) 559–564.

    Article  Google Scholar 

  19. I. Chasiotis and W. G. Knauss, The mechanical strength of polysilicon films: Part 2. Size effects associated with elliptical and circular perforations, J. Mech. Phys. Solids, 51 (2003) 1551–1572.

    Article  Google Scholar 

  20. E. C. Aifantis, Exploring the applicability of gradient elasticity to certain micro/nano reliability problems, Microsystem Technologies-Micro-and Nanosystems- Infor. Storage Proc. Syst., 15 (2009) 109–115.

    Google Scholar 

  21. J. Yang, X. L. Jia and S. Kitipornchai, Pull-in instability of nano-switches using nonlocal elasticity theory, J. Phys. D: Appl. Phys., 41 (2008) Paper No. 035103.

    Article  Google Scholar 

  22. J. Peddieson, G. R. Buchanan and R. P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41 (2003) 305–312.

    Article  Google Scholar 

  23. L. Shen, H. S. Shen and C. L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal enviroments, Comput. Mater. Sci., 48 (2010) 680–685.

    Article  Google Scholar 

  24. Y. Yan, W. Q. Wang and L. X Zhang, Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field, Appl. Math. Model., 34 (2010) 3422–3429.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Arash and R. Ansari, Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain, Physica E, 42 (2010) 2058–2064.

    Article  Google Scholar 

  26. R. Ansari, S. Sahmani and B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Phys. Lett. A, 375 (2010) 53–62.

    Article  Google Scholar 

  27. S. Sahmani and R. Ansari, Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions, J. Mech. Sci. Tech., 25 (2011) 2365–2375.

    Article  Google Scholar 

  28. R. Ansari, S. Sahmani and H. Rouhi, Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions, Phys. Lett. A, 375 (2011) 1255–63.

    Article  Google Scholar 

  29. R. Ansari, S. Sahmani and H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via Rayleigh-Ritz technique, Comput. Mater. Sci., 50 (2011) 3050–3055.

    Article  Google Scholar 

  30. R. Ansari, H. Rouhi and S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics, Int. J. Mech. Sci., 53 (2011) 786–792.

    Article  Google Scholar 

  31. R. Ansari and S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Commun. Nonlinear Sci. Numer. Simul., 17 (2012) 1965–1979.

    Article  MathSciNet  Google Scholar 

  32. A. Sapora, P. Cornetti and A. Carpinteri, Wave propagation in nonlocal elastic continua modeled by a fractional calculus approach, Commun. Nonlinear Sci. Numer. Simul., 18 (2013) 63–74.

    Article  MATH  MathSciNet  Google Scholar 

  33. F. H. Streitz, R. C. Cammarata and K. Sieradzki, Surface stress effects on elastic properties. I. Thin metal films, Phys. Rev. B, 49 (1994) 10699–10706.

    Article  Google Scholar 

  34. R. Dingreville, J. Qu and M. Cherkaoui, Surface free energy and its effects on the elastic behavior of nano-sized particles, Wires and Films, J. Mech. Phys. Solids, 53 (2005) 1827–1954.

    Article  MATH  MathSciNet  Google Scholar 

  35. F. D. Fischer, T. Waitz, D. Vollath and N. K. Simha, On the role of surface energy and surface stress in phasetransforming nanoparticles, Progress Mater. Sci., 53 (2008) 481–527.

    Article  Google Scholar 

  36. M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surface, Archive Rational Mech. Anal., 57 (1975) 291–323.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. E. Gurtin and A. I. Murdoch, Surface stress in solids, Int. J. Solids Struct., 14 (1978) 431–440.

    Article  MATH  Google Scholar 

  38. S. G. Mogilevskaya, S. L. Crouch and H. K. Stolarski, Multiple interacting circular nano-inhomogeneities with surface/interface effects, J. Mech. Phys. Solids, 56 (2008) 2298–2327.

    Article  MATH  MathSciNet  Google Scholar 

  39. F. Song and G. L. Huang, Modeling of surface stress effects on bending behavior of nanowires: incremental deformation theory, Phys. Lett. A, 373 (2009) 3969–3973.

    Article  MATH  Google Scholar 

  40. E. Gordeliy, S. G. Mogilevskaya and S. L. Crouch, Transient thermal stresses in a medium with a circular cavity with surface effects, Int. J. Solids Struct., 46 (2009) 1834–1848.

    Article  MATH  Google Scholar 

  41. X. J. Zhao and R. K. N. D. Rajapakse, Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects, Int. J. Eng. Sci., 47 (2009) 1433–1444.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Cho, J. Choi and W. Kim, Continuum-based bridging model of nanoscale thin film considering surface effects, Japanese J. Appl. Phys., 48 (2009) 020219.

    Article  Google Scholar 

  43. J. Choi, M. Cho and W. Kim, Surface effects on the dynamic behavior of nano-sized thin film resonator, Appl. Phys. Lett., 97 (2010) 171901.

    Article  Google Scholar 

  44. J. Choi, M. Cho and W. Kim, Multiscale analysis of nanoscale thin film considering surface effects: thermomechanical properties, J. Mech. Mater. Struc., 5 (2010) 161–183.

    Article  Google Scholar 

  45. S. G. Mogilevskaya, S. L. Crouch, A. L. Grotta and H. K. Stolarski, The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites, Compos. Sci. Tech., 70 (2010) 427–434.

    Article  Google Scholar 

  46. B. B. On, E. Altus and E. B. Tadmor, Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling, Int. J. Solids Struct., 47 (2010) 1243–1252.

    Article  MATH  Google Scholar 

  47. R. Ansari and S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, Int. J. Eng. Sci., 49 (2011) 1244–1255.

    Article  MathSciNet  Google Scholar 

  48. R. Ansari and S. Sahmani, Surface stress effects on the free vibration behavior of nanoplates, Int. J. Eng. Sci., 49 (2011) 1204–1215.

    Article  MathSciNet  Google Scholar 

  49. W. Kim, S. Y. Rhee and M. Cho, Molecular dynamicsbased continuum models for the linear elasticity of nanofilms and nanowires with anisotropic surface effects, J. Mech. Mater. Struc., 7 (2012) 613–639.

    Article  Google Scholar 

  50. R. Ansari, R. Gholami, M. F. Shojaei, V. Mohammadi and S. Sahmani, Surface stress effect on the vibrational response of circular nanoplates with various edge supports, ASME J. Appl. Mech., 80 (2013) 021021–1-7.

    Article  Google Scholar 

  51. R. Ansari, V. Mohammadi, M. F. Shojaei, R. Gholami and S. Sahmani, Postbuckling characteristics of nanobeams based on the surface elasticity theory, Compos Part B Eng., 55 (2013) 240–246.

    Article  Google Scholar 

  52. R. Ansari, V. Mohammadi, M. F. Shojaei, R. Gholami and S. Sahmani, Postbuckling analysis of Timoshenko nanobeams including surface stress effect, Int. J. Eng. Sci., 75 (2014) 1–10.

    Article  Google Scholar 

  53. S. Sahmani, M. Bahrami and R. Ansari, Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams, Compos Struc., 116 (2014) 552–561.

    Article  Google Scholar 

  54. S. Sahmani, M. Bahrami, M. M. Aghdam and R. Ansari, Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Compos Struc., 118 (2014) 149–158.

    Article  Google Scholar 

  55. J. Weissmuller and J. W. Cahn, Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids, Acta Mater., 45 (1997) 1899–1906.

    Article  Google Scholar 

  56. P. Sharma, S. Ganti and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., 82 (2003) 535–537.

    Article  Google Scholar 

  57. H. L. Duan, J. Wang, Z. P. Huang and B. L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53 (2005) 1574–1596.

    Article  MATH  MathSciNet  Google Scholar 

  58. P. Lu, L. H. He, H. P. Lee and C. Lu, Thin plate theory including surface effects, Int. J. Solids Struct., 43 (2006) 4631–4647.

    Article  MATH  Google Scholar 

  59. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983) 4703–4710.

    Article  Google Scholar 

  60. R. E. Bellman, B. G. Kashef and J. Casti, Differential quadrature: A technique for rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10 (1972) 40–52.

    Article  MATH  MathSciNet  Google Scholar 

  61. S. G. Mogilevskaya, S. L. Crouch and H. K. Stolarski, Multiple interacting circular nano-inhomogeneities with surface/interface effects, J. Mech. Phys. Solids, 56 (2008) 2298–2327.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Sahmani.

Additional information

Recommended by Chief-in-Editor Maenghyo Cho

Saeid Sahmani received his B.S. degree in Mechanical Engineering from University of Guilan, Iran, in 2006. He then received his M.S. degree from Iran University of Science and Technology in 2009. He is now continuing his study as Ph.D. student of Mechanical Engineering in Amirkabir University of Technology. He has published several scientific articles in excellent international journals. His research interests are nanomechanics and computational solid mechanics.

Mohsen Bahrami received his B.S. degree in Mechanical Engineering from Amirkabir University of Technology and received his M.S. and Ph.D. degrees in Mechanical Engineering from Oregon State University, United States, in 1982. Dr. Bahrami is currently a professor of solid mechanics at Department of Mechanical Engineering of Amirkabir University of Technology. He has published various journal papers and books. His research interests include mathematical modeling and analysis of robots, smart structures and computational micro- and nanomechanics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Bahrami, M. Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect. J Mech Sci Technol 29, 1151–1161 (2015). https://doi.org/10.1007/s12206-015-0227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0227-6

Keywords

Navigation