Skip to main content
Log in

Reducing particle loss in a critical orifice and an aerodynamic lens for focusing aerosol particles in a wide size range of 30 nm — 10 μm

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Most studies on particle focusing using an aerodynamic lens concentrate on loss and focusing performance of the lens itself without accounting for the critical orifice that acts as the actual inlet. If the newly proposed design for an aerodynamic lens capable of focusing particles over a wide range of 30 nm — 10 μm is integrated into the critical orifice, this will result in a huge loss of super-micron particles (> 1 μm in diameter), and the downstream aerodynamic lens will no longer have an advantage. CFD simulations were performed to investigate the loss of particles in the critical orifice and a new converging-diverging critical orifice was proposed instead of the conventional flat critical orifice to reduce the particle loss. By optimizing the angle of the converging and diverging sections as well as the relaxation chamber design, we derived an optimal design for the final aerodynamic lens and integrated system. As a result, we can generate particle beams of less than 1 mm with more than 80% penetration efficiency for particles in the 50 nm -7 μm range, and a 60% penetration efficiency for particles of 30 nm and 10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Liu, P. Ziemann, D. Kittelson and P. McMurry, Generation of particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and orifice expansions, Aerosol Sci. Technol., 22 (1995) 293–313.

    Article  Google Scholar 

  2. P. Liu, P. Ziemann, D. Kittelson and P. McMurry, Generation of particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and orifice expansions, Aerosol Sci. Technol., 22 (1995) 314–324.

    Article  Google Scholar 

  3. D. Lee, K. Park and M. Zachariah, Determination of size distribution of polydisperse nanoparticles with single particle mass spectrometry: The role of ion kinetic energy, Aerosol Sci. Technol., 39 (2005) 162–169.

    Article  Google Scholar 

  4. D. Lee, A. Miller, D. Kittelson and M. Zachariah, Characterization of metal-bearing diesel nanoparticles using single particle mass spectrometry, J. Aerosol Sci., 37 (1) (2006) 88–110.

    Article  Google Scholar 

  5. K. Lee, S. Cho and D. Lee, Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single mass spectrometry, J. Aerosol Sci., 39 (2008) 287–304.

    Article  Google Scholar 

  6. Y. Su, M. F. Sipin, H. Furutani and K. A. Prather, Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency, Anal. Chem., 76 (2004) 712–719.

    Article  Google Scholar 

  7. D. Y. Liu, D. Rutherford, M. Kinsey and K. A. Prather, Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere, Anal. Chem., 69 (10) (1997) 1808–1814.

    Article  Google Scholar 

  8. Y. Dong, A. Bapat, S. Hilchie, U. Kortshagen and S. Campbell, Generation of nano-sized free standing single crystal silicon particles, J. Vac. Sci. Technol. B, 22 (4) (2004) 1923–1930.

    Article  Google Scholar 

  9. F. Fonzo, A. Gidwani, M. Fan, D. Neumann, D. Iordanoglou, J. Heberlein, P. McMurry, S. Girshick, N. Tymiak, W. Gerberich and N. Rao, Focused nanoparticle-beam deposition of patterned microstructures, Appl. Phys. Lett., 77 (6) (2000) 910–912.

    Article  Google Scholar 

  10. L. Qi, P. MuMurry, D. Norris and S. Girshick, Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing, Aerosol Sci. Technol., 44 (2010) 55–60.

    Article  Google Scholar 

  11. W. Harris, P. Reilly and W. Whitten, Aerosol MALDI of peptides and proteins in an ion trap mass spectrometer: Trapping, resolution and signal-to-noise, Int. J. Mass. Spectrom, 258 (2006) 113–119.

    Article  Google Scholar 

  12. W. Murphy and G. Sears, Production of particulate beams, J. Appl. Phys., 35 (1964) 1986–1987.

    Article  Google Scholar 

  13. R. Das and D. Phares, Expansion of an ultrafine aerosol through a thin-plate orifice, J. Aerosol Sci., 35 (2004) 1091–1103.

    Article  Google Scholar 

  14. R. Deng, X. Zhang, K. Smith, J. Wormhoudt, D. Lewis and A. Freedman, Focusing particle with diameters of 1 to 10 microns into beams at atmospheric pressure, Aerosol Sci. Technol., 42 (2008) 899–915.

    Article  Google Scholar 

  15. D. Chen and Y. Pui, Numerical and experimental studies of particle deposition in a tube with a conical contractionlaminar flow regime, J. Aerosol Sci., 26 (4) (1995) 563–574.

    Article  Google Scholar 

  16. X. Wang and P. McMurry, An experimental study of nanoparticle focusing with aerodynamic lenses, Int. J. Mass. Spectrom, 258 (2006) 30–36.

    Article  Google Scholar 

  17. X. Wang and P. McMurry, A design tool for aerodynamic lens systems, Aerosol Sci. Technol., 40 (2006) 320–334.

    Article  Google Scholar 

  18. X. Zhang, K. Smith, D. Worsnop, J. Jimenez, J. Jayne, C. Kolb, J. Morris and P. Davidovits, Numerical characterization of particle beam collimation: Part II Integrated aerodynamic-lens-orifice system, Aerosol Sci. Technol., 38 (2004) 19–638.

    Google Scholar 

  19. X. Wang, A. Gidwani, S. Girshick and P. McMury, Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses, Aerosol Sci. Technol., 39 (2005) 624–636.

    Article  Google Scholar 

  20. K. Lee, S. Kim and D. Lee, Aerodynamic focusing of 5–50 nm nanoparticles in air, J. Aerosol Sci., 40 (2009) 1010–1018.

    Article  Google Scholar 

  21. K. Lee, T. Hwang and D. Lee, A numerical analysis of the aerodynamic focusing of particles with wide-range diameters of 30 nm-10 μm, Aerosol Sci. Technol., 47 (2013) 1001–1008.

    Article  MathSciNet  Google Scholar 

  22. P. Liu, R. Deng, K. Smith, L. Williams, J. Jayne, M. Canagaratna, K. Moore, T. Onasch, D. Worsnop and T. Deshler, Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41 (2007) 721–733.

    Article  Google Scholar 

  23. S. Chen, C. Tsai, C. Wu, D. Pui, A. Onischuk and V. Karasev, Particle loss in a critical orifice, J. Aerosol Sci., 38 (2007) 935–949.

    Article  Google Scholar 

  24. J. F. Cahill, T. K. Darlington, X. Wang, J. Mayer, M. T. Spencer, J. C. Holecek, B. E. Reed and K. A. Prather, Development of a high-pressure aerodynamic lens for focusing large particles (4–10 μm) into the aerosol time-of-flight mass spectrometer, Aerosol Sci. Technol., 48 (9) (2014) 948–956.

    Article  Google Scholar 

  25. L. R. Williams et al., Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the aerodyne aerosol mass spectrometer, Atmos Meas. Tech., 6 (2013) 3271–3280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donggeun Lee.

Additional information

Recommended by Associate Editor Suk Goo Yoon

Donggeun Lee is a Professor at School of Mechanical Engineering, Pusan National University and is now leading a basic research lab (BRL) and a Nanoparticle engineering lab. More information is available in http://home.pusan.ac.kr/~mnht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, TH., Kim, SH., Kim, S.H. et al. Reducing particle loss in a critical orifice and an aerodynamic lens for focusing aerosol particles in a wide size range of 30 nm — 10 μm. J Mech Sci Technol 29, 317–323 (2015). https://doi.org/10.1007/s12206-014-1238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-1238-4

Keywords

Navigation