Skip to main content
Log in

Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

DC electrical outputs of a piezoelectric vibration energy harvester by nonlinear rectifying circuitry can hardly be obtained either by any mathematical models developed so far or by finite element analysis. To address the issue, this work used an equivalent electrical circuit model and newly developed an algorithm to efficiently identify relevant circuit parameters of arbitrarily-shaped cantilevered piezoelectric energy harvesters. The developed algorithm was then realized as a dedicated software module by adopting ANSYS finite element analysis software for the parameters identification and the Tcl/Tk programming language for a graphical user interface and linkage with ANSYS. For verifications, various AC electrical outputs by the developed software were compared with those by traditional finite element analysis. DC electrical outputs through rectifying circuitry were also examined for varying values of the smoothing capacitance and load resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roundy, P. K. Wright and J. Rabaey, A study of low level vibrations as a power source, for wireless sensor nodes, Comp. Commun., 26 (2003) 1131–1144.

    Article  Google Scholar 

  2. H. A. Sodano, D. J. Inman and G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock Vib. Dig., 36 (2004) 197–205.

    Article  Google Scholar 

  3. S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Mater. Struct., 16 (2007) R1–R21.

    Article  Google Scholar 

  4. S. Priya and D. J. Inman, Energy harvesting technologies, Springer, New York, USA (2009).

    Book  Google Scholar 

  5. A. Erturk and D. J. Inman, Piezoelectric energy harvesting, Wiley, United Kingdom (2011).

    Book  Google Scholar 

  6. A. Erturk and D. J. Inman, Issues in mathematical modeling of piezoelectric energy harvesters, Smart Mater. Struct., 17 (2008) 065016.

    Article  Google Scholar 

  7. H. A. Sodano, G. Park and D. J. Inman, Estimation of electric charge output for piezoelectric energy harvesting, Strain, 40 (2004) 49–58.

    Article  Google Scholar 

  8. J. E. Kim and Y. Y. Kim, Analysis of piezoelectric energy harvesters of moderate aspect ratio with a distributed tip mass, ASME J. Vibr. Acoust., 133 (2011) 041010.

    Article  Google Scholar 

  9. N. G. Elvin and A. A. Elvin, A general equivalent circuit model for piezoelectric generators, J. Intell. Mater. Syst. Struct., 20 (2009) 3–9.

    Article  Google Scholar 

  10. N. G. Elvin and A. A. Elvin, A coupled finite elementcircuit simulation model for analyzing piezoelectric energy generators, J. Intell. Mater. Syst. Struct., 20 (2009) 587–595.

    Article  Google Scholar 

  11. Y. Yang and L. Tang, Equivalent circuit modeling of piezoelectric energy harvesters, J. Intell. Mater. Syst., 20 (2009) 2223–2235.

    Article  Google Scholar 

  12. M. Umeda, K. Nakamura and S. Ueha, Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator, Jpn. J. Appl. Phys., 35 (1996) 3267–3273.

    Article  Google Scholar 

  13. M. Goldfarb and L. D. Jones, On the efficiency of electric power generation with piezoelectric ceramic, J. Dyn. Syst. Meas. Control-Trans. ASME, 121 (1999) 566–571.

    Article  Google Scholar 

  14. Y. C. Shu and I. C. Lien, Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. Struct., 15 (2006) 1499–1512.

    Article  Google Scholar 

  15. B. Op het Veld, D. Hohlfeld and V. Pop, Harvesting mechanical energy for ambient intelligent devices, Inf. Syst. Front., 11 (2009) 7–18.

    Article  Google Scholar 

  16. IEEE Standards Board, IEEE Standard on Piezoelectricity, IEEE, New York (1987).

    Google Scholar 

  17. S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct., 13 (2004) 1131–1142.

    Article  Google Scholar 

  18. J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim, Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Mater. Struct., 16 (2007) 447–454.

    Article  Google Scholar 

  19. M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof and R. Puers, Fabrication, modeling and characterization of MEMS piezoelectric vibration harvesters, Sens. Actuator A-Phys., 145-6 (2008) 380–386.

    Article  Google Scholar 

  20. Y. B. Jeon, R. Sood, J.-H. Jeong and S.-G. Kim, MEMS power generator with transverse mode thin film PZT, Sens. Actuator A-Phys., 122 (2005) 16–22.

    Article  Google Scholar 

  21. M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni, Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems, Sens. Actuator A-Phys., 142 (2008) 329–335.

    Article  Google Scholar 

  22. T. H. NG and W. H. Liao, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, J. Intelli. Mater. Syst. Struct., 16 (2005) 785–797.

    Article  Google Scholar 

  23. G. K. Ottman, H. F. Hofmann, A. C. Bhatt and G. A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electron., 17 (2002) 669–676.

    Article  Google Scholar 

  24. M. J. Guan and W. H. Liao, On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages, Smart Mater. Struct., 16 (2007) 498–505.

    Article  Google Scholar 

  25. J. H. Lin, X. M. Wu, T. L. Ren and L. T. Liu, Modeling and simulation of piezoelectric MEMS energy harvesting device, Integr. Ferroelectr., 95 (2007) 128–141.

    Article  Google Scholar 

  26. A. Erturk and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct., 18 (2008) 025009.

    Article  Google Scholar 

  27. J. Brufau-Penella and M. Puig-Vidal, Piezoelectric energy harvesting improvement with complex conjugate impedance matching, J. Intell. Mater. Syst. Struct., 20 (2009) 597–608.

    Article  Google Scholar 

  28. L. Tang, Y. Yang and C. K. Soh, Toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., 21 (2010) 1867–1897.

    Article  Google Scholar 

  29. ANSYS, Release 14.5, Help System, Mechanical APDL, ANSYS, Inc.

  30. Tcl/Tk, Version 8.5, ActiveState Software, Inc.

  31. Y. Liao and H. A. Sodano, Model of a single mode energy harvester and properties for optimal power generation, Smart Mater. Struct., 17 (2008) 065026.

    Article  Google Scholar 

  32. A. Erturk and D. J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, J. Intell. Mater. Syst. Struct., 19 (2008) 1311–1325.

    Article  Google Scholar 

  33. T. Ikeda, Fundamentals of piezoelectricity, Oxford University Press, New York, USA (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Eun Kim.

Additional information

Recommended by Editor Yeon June Kang

Jae Eun Kim received his Ph.D. in Mechanical Engineering from Seoul National University, Korea in 2005. He is on the faculty of School of Mechanical and Automotive Engineering, Catholic University of Daegu. His main research interest is the smart materialbased acoustic/vibration energy control and conversion including the computational optimization of multi-physics systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.E. Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters. J MECH SCI TECHNOL 28, 4027–4036 (2014). https://doi.org/10.1007/s12206-014-0949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0949-x

Keywords

Navigation