Skip to main content

Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics


A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated with complex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is solved using a semi-implicit scheme to evaluate the correct pressure distribution. In this procedure, the PPE comprises the divergence-free velocity condition and density-invariance condition with a relaxation parameter. To test the accuracy and efficiency of the proposed incompressible SPH method, it was applied to several sample problems with largely distorted free surface, including 2D dam-break over horizontal and inclined planes with different inclination angles, as well as the water entry of a circular cylinder into a tank. We mainly focused on the time history of impact pressure on various positions of the solid boundary and temporal evolution of free surface profiles. The results showed reasonably good agreement with experimental data. However, further improvement is needed for extremely high impact flow.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Greenhow and W. Lin, Non-linear free surface effects: experiments and theory, Report Number 83-19, Department of Ocean Engineering, MIT (1983).

    Google Scholar 

  2. [2]

    R. Zhao, O. Faltinsen and J. Aarsnes, Water entry of arbitrary two-dimensional sections with and without flow separation, 21th Symposium on Naval Hydrodynamics, Trondheim, Norway (1997) 408–423.

    Google Scholar 

  3. [3]

    P. Tyv and T. Miloh, Free-surface flow due to impulsive motion of a submerged circular cylinder, J. Fluid Mech., 286 (1995) 67–101.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    M. Greenhow and S. Moyo, Water entry and exit of horizontal circular cylinders, Philos. TR Soc. A355 (1997) 551–563.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for dynamics of free boundaries, J. Compt. Phys., 39 (1981) 201–225.

    Article  MATH  Google Scholar 

  6. [6]

    M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Compt. Phys., 114 (1994) 146–159.

    Article  MATH  Google Scholar 

  7. [7]

    H. Miyata and Park, J. C. Chap.5. Wave breaking simulation. In: Rahman, M. (Ed.), Potential Flow of Fluids, Comp. Mech. Pub., UK (1995) 149–176.

    Google Scholar 

  8. [8]

    KMT Kleefsman, G. Fekken, AEP Veldman, B. Iwanowski and B. Buchner, A volume-of-fluid based simulation method for wave impact problems, J. Compt. Phys., 206 (2005) 363–393.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    R. Panahi, E. Jahanbakhsh and MS Seif, Development of a VoF-fractional step solver for floating body motion simulation, Appl. Ocean Res., 28 (2006) 171–181.

    Article  Google Scholar 

  10. [10]

    P. Lin, A fixed-grid model for simulation of a moving body in free surface flows, Comput.&Fluids, 36 (2007) 549–561.

    Article  MATH  Google Scholar 

  11. [11]

    L. B. Lucy, A numerical approach to the testing of the fusion process, Astron J., 88 (1977) 1013–1024.

    Article  Google Scholar 

  12. [12]

    R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R.Astron Soc., 181 (1977) 375–389.

    Article  MATH  Google Scholar 

  13. [13]

    G. Oger, M. Doring, B. Alessandrini and P. Ferrant, Two-dimensional SPH simulations of wedge water entries, J. Compt. Phys., 213 (2006) 803–822.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    H. Liu, K. Gong and B. L. Wang, Modelling water entry of a wedge by multiphase SPH method, SPHERIC Newsletter, 9 (2009).

    Google Scholar 

  15. [15]

    G. Kai, L. Hua and W. Ben-long, Water entry of a wedge based on SPH model with an improved boundary treatment, J.Hydrodyn., 21(6) (2009) 750–757.

    Article  Google Scholar 

  16. [16]

    M. Antuono, A. Colagrossi, S. Marrone and D. Molteni, Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., 181(3) (2010) 532–549.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    A. Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free surface role in the SPH model, Phys. Rev. E, 79(5) (2009) 1–13. 056701.

    Article  Google Scholar 

  18. [18]

    S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé and G. Graziani, d-SPH model for simulating violent impact flows, Comput. Method Appl. M., 200 (2011) 13–16: 1526–1542.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    F. Macià, M. Antuono, L. M. Gonzàlez and A. Colagrossi, Theoretical analysis of the no-slip boundary condition enforcement in SPH methods, Prog. Theor. Phys., 125(6) (2011) 1091–1121.

    Article  MATH  Google Scholar 

  20. [20]

    M. Antuono, A. Colagrossi, S. Marrone and C. Lugni, Propagation of gravity waves through an SPH scheme with numerical diffusive terms, Comp. Phys. Comm., 182(4) (2011) 866–877.

    Article  MATH  Google Scholar 

  21. [21]

    S. Marrone, A. Colagrossi, M. Antuono, C. Lugni and M. P. Tulin, A 2D+t SPH model to study the breaking wave pattern generated by fast ships, J. Fluids Struct., 27(8) (2011) 1199–1215.

    Article  Google Scholar 

  22. [22]

    A. Colagrossi, M. Antuono, A. Souto-Iglesias and D. Le Touzé, Theoretical Analysis and numerical verification of the consistency of viscous SPH formulation in simulating free-surface flows, Phys. Rev. E, 84 (2011) 026705.

    Article  Google Scholar 

  23. [23]

    M. Landrini, A. Colagrossi, M. Greco and M. P. Tulin, The fluid mechanics of splashing bow waves on ships: A hybrid-BEM-SPH analysis, Ocean Eng., 53 (2012) 111–127.

    Google Scholar 

  24. [24]

    M. Antuono, A. Colagrossi and S. Marrone, Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys.Commun., 183 (2012) 2570–2580.

    MathSciNet  Article  Google Scholar 

  25. [25]

    I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo and M. Antuono, Simulating 2D open-channel flows through an SPH model, Eur. J. Mech. B/Fluids, 34 (2012) 35–46.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    A. Colagrossi, B. Bouscasse, M. Antuono and S. Marrone, Particle packing algorithm for SPH schemes, Comput. Phys.Commun., 183 (2012) 1641–1653.

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    S. J. Cummins and M. Rudman, An SPH projection method. J. Comput. Phys., 152(2) (1999) 584–607.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    S. D. Shao and EYM. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Res., 26 (2003) 787–800.

    Article  Google Scholar 

  29. [29]

    E. S. Lee, D. Laurence, P. K. Stansby, D. Violeau and C. Moulinec, 2D flow past a square cylinder in a closed channel, SPHERIC Newsletter, 3 (2006).

  30. [30]

    M. Ellero, M. Serrano and P. Espanol, Incompressible smoothed particle hydrodynamics, J.Comput. Phys., 226 (2007) 1731–1752.

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence and P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J. Comput. Phys., 227(18) (2008) 8417–8436.

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    A. Khayyer, H. Gotoh and S. Shao, Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coast. Eng., 55 (2008) 236–250.

    Article  Google Scholar 

  33. [33]

    A. Khayyer, H. Gotoh and S. Shao, Enhanced predictions of wave impact pressure by improved incompressible SPH methods, Appl.Ocean Res., 31 (2009) 111–131.

    Article  Google Scholar 

  34. [34]

    X. Y. Hu and N. A. Adams, An incompressible multi-phase SPH method, J. of Comput. Phys., 227 (2007) 264–278.

    Article  MATH  Google Scholar 

  35. [35]

    M. Asai, A. M. Aly, Y. Sonoda and Y. Sakai, A Stabilized Incompressible SPH method by relaxing the Density invariance condition, J. Appl. Math., (2012); 2012: 24. doi: 10.1155/2012/139583.

    Google Scholar 

  36. [36]

    A. M. Aly, M. Asai and Y. Sonoda, Modelling of surface tension force for free surface flows in ISPH method. Int..J.Numer. Method H., 23 (2013) 3.

    MathSciNet  Google Scholar 

  37. [37]

    A. M. Aly, M. Asai and Y. Sonoda, Simulation of free falling rigid body into water by a stabilized incompressible SPH method, Ocean Sys. Eng., 1(3) (2011) 207–222.

    Article  Google Scholar 

  38. [38]

    H. Gotoh, S. Shao and T. Memita, SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater, Coast. Eng. J. JSCE, 46(1) (2001) 39–63.

    Article  Google Scholar 

  39. [39]

    M. Tanaka and T. Masunaga, Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility, J. Comput. Phys., 229 (2010) 4279–4290.

    Article  MATH  Google Scholar 

  40. [40]

    D. Violeau and R. Issa, Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview, Int. J. Numer. Meth. Fluids, 53 (2007) 277–304.

    MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    S. Shao and H. Gotoh, Turbulence particle models for tracking free surfaces, J. Hydraul. Res., IAHR, 43(3) (2005) 276–289.

    Article  Google Scholar 

  42. [42]

    G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamic, a mesh free particle method, World scientific Publishing Co. Pte. Ltd. (2003).

    Google Scholar 

  43. [43]

    S. Koshizuka and Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuc. Sci. Eng., 123(3) (1996) 421–434.

    Google Scholar 

  44. [44]

    H. Gotoh and T. Sakai, Key issues in the particle method for computation of wave breaking, Coast Eng., 53 (2006) 171–179.

    Article  Google Scholar 

  45. [45]

    S. Shao, Incompressible SPH simulation of water entry of a free-falling object, Int. J. Numer. Meth. Fluids, 59 (2009) 91–115.

    MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    T. H. Lee, Z. Q. Zhou and Y. S. Cao, Numerical simulations of hydraulic jumps in water sloshing and water impacting, J Fluid Eng, 124 (2002) 215–226.

    Article  Google Scholar 

  47. [47]

    Liu Xin, Xu Haihua, Shao Songdong and Lin Pengzhi, An improved incompressible SPH model for simulation of wave-structure interaction, Comput. & Fluids, 71 (2013) 113–123.

    MathSciNet  Article  Google Scholar 

  48. [48]

    G. Colicchio, M. Greco, M. Miozzi and C. Lugni, Experimental and numerical investigation of the water-entry and water-exit of a circular cylinder, Int. Workshop on Water Waves and Floating Bodies, 24 (2009) Russia.

  49. [49]

    J. S. Park, S. H. Oh, S. H. Kwon and J. Y. Chung, A study on slamming impact pressure, Korea Ocean Eng., 23(1) (2009) 67–73 (In Korean).

    Google Scholar 

  50. [50]

    J. P. Morris, P. J. Fox and Y. Zhu, Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys., 136 (1997) 214–226.

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sang-Wook Lee.

Additional information

Recommended by Associate Editor Gihun Son

A. M. Aly received his Ph.D. in Civil Engineering from Kyushu University, Japan in 2012. Currently, he is an Assistant Professor of the Department of Mathematics at South Valley University, Egypt. His research interests include computational fluid dynamics and heat transfer.

S.-W. Lee received his Ph.D. in Mechanical Engineering from the University of Illinois at Chicago in 2005. Currently, he is an Associate Professor of the School of Mechanical Engineering at the University of Ulsan. His research interests include cardiovascular mechanics and computational fluid dynamics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aly, A.M., Lee, SW. Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics. J Mech Sci Technol 28, 2179–2188 (2014).

Download citation


  • Incompressible SPH
  • Free surface flow
  • Dam-break flow
  • Inclined plane
  • Water entry
  • Circular cylinder