Skip to main content
Log in

A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We numerically investigated the behavior of the water meniscus formed between a flat surface and a tip surface, which is flat or circular in shape, using the lattice Boltzmann method (LBM). The shape of the water meniscus formed between the flat bottom surface and the tip surface depends on the tip shape and the interaction between the water meniscus and the bottom or tip surface. The interaction is determined by the contact angles of the bottom and tip surfaces, resulting in different contact lengths between the water meniscus and the bottom or tip surface. The difference in these contact lengths depends on the effects of both the tip curvature and the interaction between the water meniscus and the bottom or tip surface. We classified the shapes of the water meniscus into seven different patterns as a function of the contact angles of the flat bottom and tip surfaces: concave, semi-concave, inverse semi-concave, column, convex, semi-convex, and inverse semi-convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Salaita, Y. Wang and C. A. Mirkin, Applications of dippen nanolithography, Nat. Nanotechnol., 2 (2007) 145–155.

    Article  Google Scholar 

  2. A. Mirkin, The power of the pen: development of massively parallel dip-pen nanolithography, ACS Nano, 1 (2007) 79–83.

    Article  Google Scholar 

  3. D. S. Ginger, H. Zhang and C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed., 43 (2004) 30–45.

    Article  Google Scholar 

  4. R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, Dip-pen nanolithography, Science, 283 (1999) 661–663.

    Article  Google Scholar 

  5. J. Jang, G. C. Schatz and M. A. Ratner, Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys, 116 (2002) 3875–3886.

    Article  Google Scholar 

  6. P. Manandhar, J. Jang, G. C. Schatz, M. A. Rantner and S. Hong, Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 90 (2002) 115505.

    Article  Google Scholar 

  7. N. Cho, S. Ryu, B. Kim, G. C. Schatz and S. Hong, Phase of molecular ink in nanoscale direct deposition processes, J. Chem. Phys., 124 (2006) 024717.

    Article  Google Scholar 

  8. B. L. Weeks, A. Noy, A. E. Miller and J. J. De Yoreo, Effect of dissolution kinetics on feature size in dip-pen nanolithography, Phys. Rev. Lett., 88 (2002) 255505.

    Article  Google Scholar 

  9. J. R. Hamptom, A. A. Dameron and P. S. Weiss, Transport rates vary with deposition time in dip-pen nanolithography, J. Phys. Chem. B, 109 (2005) 23118.

    Article  Google Scholar 

  10. D. L. Malotky and M. K. Chaudhury, Investigation of capillary forces using atomic force microscopy, Langmuir, 17 (2001) 7823–7829.

    Article  Google Scholar 

  11. W. C. Carter, The forces and behavior of fluids constrained by solids, Acta metal., 36 (1988) 2283–2292.

    Article  Google Scholar 

  12. E. J. D. Souza, M. Brinkmann, C. Mohrdieck, A. Crosby and E. Arzt, Capillary forces between chemically different substrates, Langmuir, 24 (2008) 10161–10168.

    Article  Google Scholar 

  13. E. J. D. Souza, M. Brinkmann, C. Mohrdieck and E. Arzt, Enhancement of capillary forces by multiple liquid bridges, Langmuir, 24 (2008) 8813–8820.

    Article  Google Scholar 

  14. T. Stifer, O. Marti and B. Bhushan, Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B, 62 (2000) 13 667–13 673.

    Article  Google Scholar 

  15. M. Farshchi-Tabrizi, M. Kapple, Y. Cheng, J. Gutmann and H. J. Butt, On the adhesion between fine particles and nanocontacts: an atomic force microscope study, Langmuir, 22 (2006) 2171–2184.

    Article  Google Scholar 

  16. A. K. Gunstensen and D. H. Rothman, Lattice Boltzmann model of immiscible fluids, Phy. Rev. A, 43 (1991) 4320–4327.

    Article  Google Scholar 

  17. X. Shan and H. Chen, Lattice Boltzmann model of simulating flows with multiple phases and components, Phy. Rev. E, 47 (1993) 1815–1819.

    Article  Google Scholar 

  18. M. R. Swift, W. R. Osborn and J. M. Yeomans, Lattice Boltzmann Simulation of nonideal fluids, Phy. Rev. Lett., 75 (1995) 830–833.

    Article  Google Scholar 

  19. T. Inamuro, T. Ogata, S. Tajima and N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198 (2004) 628–644.

    Article  MATH  Google Scholar 

  20. Y. Y. Yan and Y. Q. Zu, A lattice Boltzmann method for incompressible two-phase flow on partial wetting surface with large density ratio, J. Comput. Phys., 227 (2007) 763–775.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Yoshino and Y. Mizutani, Lattice Boltzmann simulation of liquid-gas flows through solid bodies in a square duct, Math. Comput. Simul., 72 (2006) 264–269.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. J. Briant, P. Papatzacos and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid-gas system, Philos. Trans. R. Soc. Lond. A, 360 (2002) 485–495.

    Article  MATH  Google Scholar 

  23. A. J. Briant, A. J. Wagner and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid-gas system, Phys. Rev. E, 69 (2004) 031602.

    Article  Google Scholar 

  24. J. W. Cahn, Critical point wetting, J. Chem. Phys., 66 (1977) 3667–3672.

    Article  Google Scholar 

  25. Y. Kataoka and T. Inamuro, Numerical simulations of the behavior of a drop in a square pipe flow using the two-phase lattice Boltzmann method, Phil. Trans. R. Soc. A, 369 (2011) 2528–2536.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Tanaka, Y. Washio, M. Yoshino and T. Hirata, Numerical simulation of dynamic behavior of droplet on solid surface by the two-phase lattice Boltzmann method, Comput. Fluids, 40 (2011) 68–78.

    Article  MATH  Google Scholar 

  27. P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in changed and neutral one-component systems, Phys. Rev., 94 (1954) 511–525.

    Article  MATH  Google Scholar 

  28. L. Wu, M. Tsutahara, L. S. Kim and M. Y. Ha, Threedimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, Int. J. Multiphase Flow, 34 (2008) 852–864.

    Article  Google Scholar 

  29. Q. Zou and X. He, On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model, Phys. Fluids, 9 (1997) 1591–1610.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Yeong Ha.

Additional information

Recommended by Associate Editor Yang Na

M. Y. Ha received his B.S. degree from Pusan National University, Korea in 1981, his M.S. degree, in 1983, from Korea Advanced Institute of Science and Technology, Korea, and his Ph.D. degree from Pennsylvania State University, USA in 1990. Dr. Ha is currently a Professor at the School of Mechanical Engineering at Pusan National University in Buasn, Korea. He serves as an Editor of the Journal of Mechanical Science and Technology. His research interests are focused on thermal management, computational fluid dynamics, and micro/nanofluids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, S.W., Ha, M.Y., Kim, Ss. et al. A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip. J Mech Sci Technol 28, 1285–1295 (2014). https://doi.org/10.1007/s12206-014-0118-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0118-2

Keywords

Navigation