Skip to main content

A review of metallic radiation recuperators for thermal exhaust heat recovery

Abstract

Radiation recuperator is a class of indirect contact heat exchanger widely used for waste heat recovery in high temperature industrial applications. At higher temperatures heat loss is higher and as the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, a radiation recuperator becomes a key component in an energy recovery system with great potential for energy saving. Improving recuperator performance, durability, and its design and material considerations has been an ongoing concern. Recent progress in furnace design and micro turbine applications together with use of recuperators has resulted in reduced fuel consumption, increased cost effectiveness and short pay-back time periods. Due to its high commercial value and confidential nature of the industry, little information is available in the open literature as compared to convection recuperators where results are well documented. This review paper intends to bridge the gap in literature and provides valuable information on experimental and theoretical investigations in radiation recuperator development along with identification of some unresolved issues.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W. Turner and S. Doty, Energy management handbook, The Fairmount Press, Inc. (2009).

    Google Scholar 

  2. [2]

    D. A. Reay, Heat recovery systems, Chapman and Hall, London (1979).

    Google Scholar 

  3. [3]

    R. K. Shah, B. Thonon and D. M. Benforado, Opportunities for heat exchanger applications in environmental systems, Applied Thermal Engineering, 20 (2000) 631–650.

    Google Scholar 

  4. [4]

    US DOE EIA, Annual energy review, Energy Information Administration, Washington, D.C. (2006).

    Google Scholar 

  5. [5]

    W. Trinks, M. H. Mawhinney and R. A. Shannon, Industrial furnaces, John Wiley and Sons, Inc. (2004).

    Google Scholar 

  6. [6]

    R. Goldstick, Principles of waste heat recovery, Atlanta, GA: The Fairmont Press, Inc. (1986).

    Google Scholar 

  7. [7]

    A. Schack, Metallic recuperators, In Waste heat recovery. London; Chapman and Hall Ltd. (1961), 107–116.

    Google Scholar 

  8. [8]

    J. B. Jensen, Non-uniform heat transfer in thermal regenerators, Ph.D. Thesis, Denmark Technical Uni. (2011).

    Google Scholar 

  9. [9]

    M. T. Zarrinehkafsh and S. M. Sadrameli, Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery, Applied Thermal Engineering, 24 (2004) 373–382.

    Google Scholar 

  10. [10]

    A. E. Sheindlin, High temperature equipment, Hemisphere Publishing Corporation, New York (1986).

    Google Scholar 

  11. [11]

    R. K. Shah and P. S. Dušan, Fundamentals of heat exchanger design, John Wiley and Sons (2003).

    Google Scholar 

  12. [12]

    E. U. Schlünder, Heat exchanger design handbook, Hemisphere Publishing Corporation (1997).

    Google Scholar 

  13. [13]

    T. Kuppan, Heat exchanger design handbook, Marcel Dekker Inc. (2000).

    Google Scholar 

  14. [14]

    N. Fricker, Effective use of gas on high temperature furnaces, Metallurgia, 53(12) (1986) 544–553.

    Google Scholar 

  15. [15]

    J. W. Seehausen, The development and operation of high temperature metallic recuperators in the fiber glass industry, AIChE, 83(257) (1987) 272–277.

    Google Scholar 

  16. [16]

    A. Ashfield, High temperature high efficiency recuperators, Glass International (1988) 30–31.

    Google Scholar 

  17. [17]

    C. J. Dobos and D. R. Heintz, Documentation of compact ceramic recuperation benefits. In IGRC: proceedings (1987) 945–948.

    Google Scholar 

  18. [18]

    S. M. Cho, A. H. Seltzer, T. V. Narayanan, A. C. Shah and J. K. Weddell, Design of a continuous ceramic composite heat exchanger for high temperature, high pressure applications, In proceedings of IJPGC, ASME, 30(2) (1996) 1–9.

    Google Scholar 

  19. [19]

    C. Luzzato, A. Morgana, S. Chaudourne, T. O. O’Doherty and G. Sorbies, A new concept composite heat exchanger to be applied in high temperature industrial processes, Applied Thermal Engineering, 17 (1997) 789–797.

    Google Scholar 

  20. [20]

    C. K. Gupta, Chemical metallurgy: Principles and practice, Wiley-VCH (2003).

    Google Scholar 

  21. [21]

    S. N. Singh, S. Yokosh and R. L. Bennett, Gas combustion studies in a recuperative radiant tube, Petroleum Division: proceedings, New York, ASME (1988) 25–29.

    Google Scholar 

  22. [22]

    S. S. Singh, Design of a high temperature gas fired heating system, Industrial Heating, 55 (1988) 18–20.

    Google Scholar 

  23. [23]

    V. I. Yarygin, V. V. Klepikov and A. V. Vizgalov, Development of recuperative burner for a thermionic converter, In 28th IECEC, Atlanta, SAE, 1 (1993) 1033–1037.

    Google Scholar 

  24. [24]

    J. L. Pellegrino, Energy and environmental profile of the U.S. glass industry, Energetics, Inc. (2002).

    Google Scholar 

  25. [25]

    M. G. Howard and G. J. Wingfield, Recent trends in metallic recuperators for use in the glass industry, Glass Technology International, 28(4) (1987) 165–168.

    Google Scholar 

  26. [26]

    K. Teisen, Changing criteria of furnace designs for the container industry and role of side fired recuperative glass melting tank, Glass Technology, 32(3) (1991) 75–81.

    Google Scholar 

  27. [27]

    M. E. Ward, D. Knowles, S. R. Davis and J. Bohn, Effect of combustion air preheat on forge furnace productivity, IGRC, Rockville, MD (1985) 763–776.

    Google Scholar 

  28. [28]

    N. Margolis and R. Brindle, Energy and environmental profile of the U.S. iron and steel industry, Energetics Inc., Columbia, Maryland (2000).

    Google Scholar 

  29. [29]

    C. J. Sismey, Recuperators in glass industry, Glass (London), 64(4) (1987) 149–150.

    Google Scholar 

  30. [30]

    J. E. Snyder and D. R. Petrak, Design and material selection for a high-temperature burner duct recuperator, American Ceramics Society, 14 (1985) 59–70.

    Google Scholar 

  31. [31]

    S. J. Dapkunas, Ceramic heat exchangers. American Society Bulletin, 67(2) (1988) 388–391.

    Google Scholar 

  32. [32]

    S. E. Dvoryashin, N. A. Mikov and I. G. Toporishchev, Increase in air heating temperature in a ceramic soaking pit, Metallurgist (1–2) (1990) 34.

    Google Scholar 

  33. [33]

    L. G. Clawson and W. W. Teich, Development of a corrosion suppression approach using continuous condensing for recuperating furnaces, In ASHRAE (1986) 92: 507–516.

    Google Scholar 

  34. [34]

    I. Stambler, See breakthrough for high temperature metallic recuperator, IJ GTW, 17(4) (1987) 42–47.

    Google Scholar 

  35. [35]

    T. S. Sidhu, S. Prakash and R. D. Agrawal, Studies on the properties of HVOF coatings for higher temperature applications, Materials Science, 41(6) (2005) 805–823.

    Google Scholar 

  36. [36]

    P. J. Maziasz, B. A. Pint, Y. Yamamoto and E. Lara-Curzio, Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers, IJHE, 32 (2007) 3622–3630.

    Google Scholar 

  37. [37]

    H. Jacobs, US Patent No. 2806677 (1957).

  38. [38]

    A. Schack, US Patent No. 2917285 (1959).

  39. [39]

    J. W. Seehausen, US Patent No. 3346042 (1967).

  40. [40]

    A. J. White, US Patent No. 3446279 (1969).

  41. [41]

    G. P. Kuchin, The use of gas-suspension heat exchangers utilizing waste heat gases from glass furnaces, Translated from Steldo I Keramika, 5 (1969) 8–11.

    Google Scholar 

  42. [42]

    H. Jacobs, US Patent No. 3797558 (1974).

  43. [43]

    L. P. Kharitonova and A. V. Pozhorskii, Development of steam recuperators, Soviet Forging and Sheet Metal stamping Technology, 2 (1989) 78–81.

    Google Scholar 

  44. [44]

    E. Azad and H. Aliahmad, Thermal performance of waste heat recuperator with heat pipes for thermal power station, Heat Recovery Systems and CHP, 9(3) (1989) 275–280.

    Google Scholar 

  45. [45]

    H. Barklage, Batch preheating on glass melting furnaces, Glass Technology, 62(4) (1989) 113–121.

    Google Scholar 

  46. [46]

    Y. S. Sukharchak and A. K. Yudkin, Ways of using coke more efficiently in cupolas, Soviet Castings Technology, 4 (1989) 49–51.

    Google Scholar 

  47. [47]

    S. H. Chan and K. Kumar, Analytical investigation of SER recuperator performance, In ASME, Petroleum Division, v 30: proceedings. New York, ASME (1990) 161–168.

    Google Scholar 

  48. [48]

    J. Tomik, New furnace utilizes glass fiber waste, Glass Industry, 71(4) (1990) 23–24.

    Google Scholar 

  49. [49]

    Anon, High performance recuperation for 700–1100°C furnaces, Steel Times International, 219(6) (1991) 325.

    Google Scholar 

  50. [50]

    K. Teisen, Metallic recuperator and regenerator designs compared, Glass International, 68(10) (1991) 415–418.

    Google Scholar 

  51. [51]

    G. Anderson, Benefits of recuperation in intermittent kilns, In AUSTCERAM 90: proceedings, 53–55 (1990) 402–405.

    Google Scholar 

  52. [52]

    W. B. Veltkamp, E. P. Van Kemenade and W. F. J. Sampers, Combustion Heated thermionic systems, In proceedings of IECEC, SAE, (1992) 3.443–3.449.

    Google Scholar 

  53. [53]

    W. B. Veltkamp and E. P. Kemenade, Performance of combustion heated thermionic systems, In 28th IECEC v1: proceedings, SAE, (1993) 1019–1024.

    Google Scholar 

  54. [54]

    J. Tang and A. R. Cooper, Application of pure oxygen with batch preheating to glass-melting, American Ceramic Society Bulletin, 69 (1990) 1827–1830.

    Google Scholar 

  55. [55]

    K. Aydin and A. Akinci, Application of oxy-fuel firing to an E-glass furnace, Glass Tech., 34(6) (1993) 256–258.

    Google Scholar 

  56. [56]

    G. M. Matveev, V. V. Mironov, E. M. Raskina and K. E. Tarasevich, Power saving in glass melting, Glass and Ceramics, 55 (1998) 11–12.

    Google Scholar 

  57. [57]

    B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Oxy-fuel combustion technology for coal-fired power generation, Progress in Energy and Combustion Science, 31 (2005) 283–307.

    Google Scholar 

  58. [58]

    S. P. Bhat, Thermal fatigue analysis: a case study of recuperators, In Symposium on Case studies for Fatigue Education: proceedings, Philadelphia (1994) 101–108.

    Google Scholar 

  59. [59]

    M. A. El-Masri, Modified high efficiency, recuperated gas turbine cycle, Journal of Engineering for Gas Turbines and Power, Transactions of ASME, 110(2) (1987) 233–242.

    Google Scholar 

  60. [60]

    Z. P. Tilliette, E. Proust and F. Carre, Four-year investigation of Brayton cycle systems for future French space power applications, IJGTP, ASME, 110(4) (1988) 641–646.

    Google Scholar 

  61. [61]

    C. F. McDonald, Increasing role of heat exchangers in gas turbine plants, In ASME (paper) GT 103 (1989) 10.

    Google Scholar 

  62. [62]

    R. Mackay, Gas turbine generator set for hybrid vehicles, SAE technical paper series: proceedings (1992) 19–24.

    Google Scholar 

  63. [63]

    R. A. Uhlig, R. L. Kiang and J. L. Buyer, Flow distribution in a model recuperator of an intercooled recuperative marine gas engine, ASME GT (1990) 394–398.

    Google Scholar 

  64. [64]

    R. L. Kiang and T. L. Bowen, Application of advanced heat exchanger in a 22 Megawatt naval propulsion gas turbine, In ASME/JSME TEJC: proceedings (1995) 347–358.

    Google Scholar 

  65. [65]

    K. W. Karstensen and J. C. Wiggins, Variable geometry power turbine for marine gas turbines, International Journal of Turbomachinery, 112(2) (1990) 165–174.

    Google Scholar 

  66. [66]

    R. Mackay and J. C. Noe, High efficiency low cost small gas turbines, In IGTI, ASME, 6 (1991) 163–167.

    Google Scholar 

  67. [67]

    J. Jen, Primary surface recuperator for vehicular gas turbine, In FTTCE: proceedings, SAE (1987) 9.

    Google Scholar 

  68. [68]

    M. E. Ward and L. Holman, PSR for high performance prime-movers, In IECEC: proceedings, SAE (1992) 1–10.

    Google Scholar 

  69. [69]

    D. Merchant, Economies in heat-treatment furnace technology, Metallurgia, 55(2) (1988) 80–82.

    Google Scholar 

  70. [70]

    H. Kroeger and W. Schnabel, Increasing productivity by using ladle heating, Steel International, 216(10) (1988) 2.

    Google Scholar 

  71. [71]

    J. G. Brissen and G. W. Swift, Measurements and modelling of recuperation for stirling refrigerator, International Journal of Cryogenics, 34(12) (1994) 971–982.

    Google Scholar 

  72. [72]

    R. Smith, The use of high temperature heat exchangers to increase power plant thermal efficiency, In Proceedings, IEEE, 3 (1997) 1690–1695.

    Google Scholar 

  73. [73]

    R. Budin and A. Mihelic-Bogdani, Heat recovery in polyester production: a case study, Applied Thermal Engineering, 11(1) (1997) 661–665.

    Google Scholar 

  74. [74]

    J. M. Chawla, Waste heat recovery from flue gases with substantial dust load, Chemical Engineering and Processing, 38 (1999) 365–371.

    MathSciNet  Google Scholar 

  75. [75]

    G. F. Weber, J. P. Hurley and D. J. Seery, Testing of a very high temperature heat exchanger in a pilot-scale slagging furnace system, In Proceedings IJPGC, July (2000) 23–26.

    Google Scholar 

  76. [76]

    V. V. Chernov and A. V. Aksenov, Intensification of heat exchange in recuperators using ceramic coatings, Refractories and Industrial Ceramics, 42 (2001) 9–10.

    Google Scholar 

  77. [77]

    L. Junhong, L. Zhizhang and L. Zhiwei, Truck waste heat recovery for heating bitumen used in road maintenance, Applied Thermal Engineering, 23 (2003) 409–416.

    Google Scholar 

  78. [78]

    D. A. Krivopuskov, A heat exchanger for cooling high temperature gases, Chemical and Petroleum Engineering, 39 (2003) 9–10.

    Google Scholar 

  79. [79]

    M. Namba, K. Miura, Y. Tomoyasu, H. Kiuchi, Y. Harada and N. Tezuka, US Patent No. 6675880 (2004).

  80. [80]

    B. S. Chaikin, G. E. Mar’yanchik, E. M. Panov, P. T. Shaposhnikov and B. A. Makarevich, State-of-the-art plants for drying and high-temperature heating of ladles, Refractories and Industrial Ceramics, 47(5) (2006) 283–287.

    Google Scholar 

  81. [81]

    K. Khoshmanesh, A. Z. Kouzani, S. Nahavandi and A. Abbassi, Reduction of fuel consumption in an industrial glass melting furnace, In TENCON, IEEE (2007) 1–4.

    Google Scholar 

  82. [82]

    K. Morimoto, Y. Suzuki and N. Kasagi, High performance recuperator with oblique wavy walls, ASME Journal of Heat Transfer, 130101801 (2008) 10.

    Google Scholar 

  83. [83]

    B. Tsai and Y. L. Wang, A novel swiss-roll recuperator for the micro-turbine engine, Applied Thermal Engineering, 29 (2009) 216–223.

    Google Scholar 

  84. [84]

    H. Shih and Y. Huang, Thermal design and model analysis of the Swiss-roll recuperator for an innovative micro gas turbine, Applied Thermal Engineering, 29 (2009) 1493–99.

    Google Scholar 

  85. [85]

    E. Aschenbruck, M. Beukenberg and G. Fruechtel, US Patent No. 7766731 (2010).

  86. [86]

    A. Bejan and A. D. Kraus, Heat transfer handbook, John Wiley and Sons, Inc. (2003).

    Google Scholar 

  87. [87]

    W. M. Kays and M. E. Crawford, Convective heat and mass transfer, McGraw-Hill Book Company (1993).

    Google Scholar 

  88. [88]

    H. C. Hottel and A. F. Sarofim, Radiative transfer, McGraw-Hill, New York (1967).

    Google Scholar 

  89. [89]

    F. P. Incropera, P. J. Prescott and D. D. Voelkel, Hybrid systems for furnace waste heat recovery: Use of a radiation recuperator with a Rankine cycle, Heat Recovery Systems and CHP, 5(4) (1985) 321–333.

    Google Scholar 

  90. [90]

    E. F. C. Somerscales and J. G. Knudsen, Fouling of heat transfer equipment, Hemisphere (1981).

    Google Scholar 

  91. [91]

    V. E. Loginov, Power expended for pumping heat-transfer agents and efficiency of the heat exchange in conical radiative slot Recuperators, Engineering Physics and Thermophysics, 79(2) (2006) 390–394.

    MathSciNet  Google Scholar 

  92. [92]

    A. E. Bergles, M. K. Jensen and B. Shome, Bibliography on enhancement of convective heat and mass transfer, Journal of Enhanced Heat Transfer, 4 (1995) 1–6.

    Google Scholar 

  93. [93]

    S. Kakaç, A. E. Bergles, F. Mayinger and H. Yuncu, Heat transfer enhancement of heat exchangers, Kluwer (1999).

    Google Scholar 

  94. [94]

    L. D. Tijing, B. C. Pak, B. J. Baek and D. H. Lee, A study on heat transfer enhancement using straight and twisted internal fins, Int.Comm.in H.M.T., 33 (2006) 719–726.

    Google Scholar 

  95. [95]

    S. Eimsa-ard, C. Thianpong and P. Promvonge, Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements, Int.Comm.in H.M.T., 33 (2006) 1225–1233.

    Google Scholar 

  96. [96]

    H. Sharma, A. Kumar and Varun, Performance model of metallic concentric tube recuperator with counter flow arrangement, Journal of Heat and Mass Transfer, Springer, 46 (2010) 295–304.

    Google Scholar 

  97. [97]

    J. G. Marakis, C. Papapavlou and E. Kakaras, A parametric study of radiative heat transfer in pulverized coal furnaces, IJ HMT, 43 (2000) 2961–2971.

    MATH  Google Scholar 

  98. [98]

    J. Yamada, Y. Kurosaki and T. Nagai, Radiation heat transfer between fluidizing particles and heat transfer surface in a fluidized bed, Transactions of ASME, 123 (2001) 458.

    Google Scholar 

  99. [99]

    M. Eriksson and R. G. Mohammad, Radiation heat transfer in circulating fluidized bed combustors, International Journal of Thermal Sciences, 44, (2005), 399–409.

    Google Scholar 

  100. [100]

    F. Farhadi, B. M. Bahrami, M. M. Y. Hashemi, Radiative models for the furnace side of a bottom-fired reformer, Applied Thermal Engineering, 25 (2005) 2398–2411.

    Google Scholar 

  101. [101]

    S. L. Chang and C. Q. Zhou, Impacts of radiation heat transfer on NOx calculation in industrial furnaces, 37 th IECEC (2002).

    Google Scholar 

  102. [102]

    G. Scribano, G. Solero and A. Coghe, Pollutant emissions reduction and performance optimization of an industrial radiant tube burner, Experimental Thermal and Fluid Science, 30 (2006) 605–612.

    Google Scholar 

  103. [103]

    M. F. Modest, Radiative heat transfer, McGraw-Hill, New York (1993).

    Google Scholar 

  104. [104]

    M. Mengiic and R. Viskanta, Radiative heat transfer in three dimensional rectangular enclosures containing inhomogeneous, anisotropically scattering media, Quant. Spect. and Radiative Tfr., 33(6) (1985) 533–549.

    Google Scholar 

  105. [105]

    W. A. Fiveland, A discrete-ordinates method for predicting radiative heat transfer in axisymmetric enclosures, ASME Journal of Heat transfer, 82-HT-20 (1986).

    Google Scholar 

  106. [106]

    J. Truelove, Three dimensional radiation in absorbing-emitting-scattering media using DOM approximation, Quant. Spect. and Radiative Tfr., 39(1) (1988) 27–31.

    Google Scholar 

  107. [107]

    F. C. Lockwood and N. G. Shah, A new radiation solution method for incorporation in general combustion prediction procedures, The Combustion Institute, (1981) 1405–1414.

    Google Scholar 

  108. [108]

    J. C. Chai, H. S. Lee and S. V. Patankar, Finite volume method for radiation heat transfer, Thermophysics and Heat Transfer, 8(3) (1994) 419–425.

    Google Scholar 

  109. [109]

    H. C. Hottel and E. S. Cohen, Radiant heat exchange in a gas filled enclosure: allowance for non-uniformity in temperature, AIChE Journal, 4(1) (1958) 3.

    Google Scholar 

  110. [110]

    J. R. Howell and M. Perlmutter, Monte Carlo solution of thermal transfer through radiant media between gray walls, Journal of Heat Transfer, 86(1) (1964) 116–122.

    Google Scholar 

  111. [111]

    J. M. Hartmann, D. Levi, R. Leon and J. Taine, Line by line and narrow band statistical model calculation for H2O, Quant. Spect. and Radiative Tfr., 32(2) (1984) 119–127.

    Google Scholar 

  112. [112]

    A. Soufiani, J. M. Hartmann and J. Taine, Validity of band model calculations for CO2 and H2O applied to properties and conductive radiative transfer, Quant. Spect. and Radiative Tfr., 32 (1984) 119–27.

    Google Scholar 

  113. [113]

    M. K. Denison and B. W. Webb, A spectral line based weighted sum of gray gases model for arbitrary RTE solvers, Journal of Heat Transfer, 115 (1993) 1004–1011.

    Google Scholar 

  114. [114]

    D. K. Edwards, Molecular gas band radiation, In Advances in Heat Transfer, 12 (1976) 115–123.

    Google Scholar 

  115. [115]

    N. Lallemant and R. Weber, A computationally efficient procedure for calculating gas radiative properties using exponential wide band model, IJHMT, 39 (1996) 3273–3286.

    Google Scholar 

  116. [116]

    L. Zhang, A. Soufiani and J. Taine, Spectral correlated and non correlated radiative transfer in a finite axisymmetric system containing an absorbing and emitting real gas particle mixture, IJHMT, 31 (1985) 2261–2272.

    Google Scholar 

  117. [117]

    T. K. Kim, J. A. Menart and H. S. Lee, Non-gray radiative gas analysis using the S-N discrete ordinates method, ASME Journal of Heat Transfer, 113 (1991) 946–952.

    Google Scholar 

  118. [118]

    O. J. Kim and T. H. Song, Data base of WSGGM-based spectral model for radiation properties of combustion products, Quant. Spect. and Rad. Tfr., 64(4) (2000) 379–394.

    MathSciNet  Google Scholar 

  119. [119]

    Mohamed Naceur Borjinia, Kamel Guedrib and Rachid Saïdb, Modeling of radiative heat transfer in 3D complex boiler with non-gray sooting media, Journal of Quant. Spect. and Radiative Tfr., 105(2) (2007) 167–179.

    Google Scholar 

  120. [120]

    N. Lallemant, A. Sayre and R. Weber, Evaluation of emissivity correlations for H2O-CO2-N2/air mixtures and coupling with solution methods of RTE, Progress in Energy and Combustion Science, 22 (1996) 543–574.

    Google Scholar 

  121. [121]

    C. L. Tien, M. F. Modest and C. R. McCreight, Infrared radiation properties of nitrous oxide, Quant. Spect. and Radiative Tfr., 12 (1972) 267–277.

    Google Scholar 

  122. [122]

    M. A. Brosmer and C. L. Tien, Infrared radiation properties of methane at elevated temperatures, Quant. Spect. and Radiative Tfr., 33(5) (1985) 521–532.

    Google Scholar 

  123. [123]

    M. A. Brosmer and C. L. Tien, Thermal radiation properties of C2H2, ASME Heat Transfer, 107 (1985) 943–948.

    Google Scholar 

  124. [124]

    I. H. Farag, Non-luminous gas radiation: approximate emissivity models, 7th IHTC, Munich, 2 (1982) 487–492.

    Google Scholar 

  125. [125]

    B. Leckner, Spectral and total emissivity of H2O and CO2, Combustion and Flame, 19 (1972) 33–48.

    Google Scholar 

  126. [126]

    C. B. Ludwig, W. Malkmus, J. E. Reardon and J. A. L. Thomson, Handbook of infrared radiation from combustion gases, NASA, Technical Report SP-3080 (1973).

    Google Scholar 

  127. [127]

    R. Siegel and J. R. Howell, Thermal radiation heat transfer, Taylor and Francis, Washington, D.C. (2001).

    Google Scholar 

  128. [128]

    T. F. Smith, Z. F. Shen and J. N. Friedman, Evaluation of coefficients for WSGGM, ASME Journal of Heat Transfer, 104 (1982) 602–608.

    Google Scholar 

  129. [129]

    Sung Ho Jeong, Joon Jeong Yi, Jong Keun Kim and Man Yeong Ha, Computer modeling of the continuous annealing furnace, KSME, 5(l) (1991) 16–21.

    Google Scholar 

  130. [130]

    P. J. Coelho, J. M. Goncalves and M. G. Carvalho, Modelling of radiative heat transfer in enclosures with obstacles, IJHMT, 41(4–5) (1998) 745–756.

    MATH  Google Scholar 

  131. [131]

    J. G. Marakis, C. Papapavlou and E. Kakaras, A parametric study of radiative heat transfer in pulverized coal furnaces, IJHMT, 43 (2000) 2961–2971.

    MATH  Google Scholar 

  132. [132]

    F. Farhadi, M. Bahrami and M. M. Y. Motamed Hashemi, Radiative models for furnace side of a bottom-fired reformer, Applied Thermal Engineering, 25 (2005) 2398–2411.

    Google Scholar 

  133. [133]

    Man Young Kim, A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace, IJ HMT, 50 (2007) 3740–3748.

    MATH  Google Scholar 

  134. [134]

    N. Selcük, R. G. Siddal and J. M. Beer, A comparison of mathematical models of the radiative behavior of a largescale experimental furnace, 16 th International Symposium on Combustion, 53 (1976).

  135. [135]

    A. S. Jamaluddin and P. J. Smith, Predicting radiative transfer in axisymmetric cylindrical enclosures using DOM, Combustion Science and Technology, 62 (1988) 173.

    Google Scholar 

  136. [136]

    Y. Mori, Y. Yamada and K. Hijikata, Radiation effects on performances of radiative gas heat exchanger, IJHMT, 23 (1980) 1079–1089.

    MATH  Google Scholar 

  137. [137]

    E. L. Mediokritskii, V. L. Gaponov and V. E. Loginov, Study of heat transfer in computer models, Engineering Physics and Thermophysics, 70(1) (1997) 117–122.

    Google Scholar 

  138. [138]

    A. J. Jolly, T. O’ Doherty and C. J. Bates, COHEX: a computer model for solving the thermal energy exchange in an ultra high temperature heat exchanger, Applied Thermal Engineering, 18 (1998) 1263–1276.

    Google Scholar 

  139. [139]

    W. Kim, Analysis on prediction of temperature distribution in an annular radiative recuperator, International Journal of Energy Research, 23 (1999) 637–647.

    Google Scholar 

  140. [140]

    G. Sethi and A. M. Ghosh, Towards Cleaner Technologies: a process story in Firozabad glass industry, TERI (2008).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harshdeep Sharma.

Additional information

Recommended by Associate Editor Tong Seop Kim

Harshdeep Sharma is an Associate Professor in SCME, Galgotias University, Greater Noida, India. His field of specialization is radiation heat transfer. His interests include modeling, simulation of heat transfer problems in high temperature applications.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, H., Kumar, A., Varun et al. A review of metallic radiation recuperators for thermal exhaust heat recovery. J Mech Sci Technol 28, 1099–1111 (2014). https://doi.org/10.1007/s12206-013-1186-4

Download citation

Keywords

  • Double shell
  • Heat recovery
  • Heat transfer
  • Thermal radiation