Skip to main content
Log in

Active control of impinging jet for modification of mixing

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The objective of the present study is to modify mixing and heat transfer in impinging jets using a single-frequency excitation imposed at the jet exit. The excitation frequency is selected to be St θ = /U J,max = 0.017 where θ is the jet-exit momentum thickness and U J,max is the jet-exit maximum velocity. In free jets, this excitation results in turbulence suppression in a downstream location. On the other hand, in impinging jets, the effect of excitation significantly depends on the distance (H) between the jet exit and the impinging wall. For large H (e.g. H / D = 10, D is the jet exit diameter), the Nusselt number near the stagnation point (Nu stag ) decreases due to turbulence suppression by the excitation. For small H (e.g. H / D = 2), Nu stag is almost unchanged but the secondary peak much suppressed. On the other hand, Nu stag increases for H / D = 6 due to turbulence enhancement by the excitation. The different behaviors of Nusselt number with respect to H / D are closely related to the changes in vortical structures by excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces, Advances in Heat Transfer, 13 (1977) 1–60.

    Article  Google Scholar 

  2. K. Jambunathan, E. Lai, M. A. Moss and B. L. Button, A review of heat transfer data for single circular jet impingement, Int. J. Heat and Fluid Flow, 13 (1992) 106–115.

    Article  Google Scholar 

  3. J. Lee and S. J. Lee, Stagnation region heat transfer of a turbulent axisymmetric jet impingement, Exp. Heat Transfer, 12 (1999) 137–156.

    Article  Google Scholar 

  4. K. B. M. Q. Zaman and A. K. M. F. Hussain, Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response, J. Fluid Mech., 101 (1980) 449–491.

    Article  Google Scholar 

  5. K. B. M. Q. Zaman and A. K. M. F. Hussain, Turbulence suppression in free shear flows by controlled excitation, J. Fluid Mech., 103 (1981) 133–159.

    Article  Google Scholar 

  6. T. Liu and J. P. Sullivan, Heat transfer and flow structures in an excited circular impinging jet, Int. J. Heat Mass Transfer, 39 (1996) 3695–3706.

    Article  Google Scholar 

  7. S. D. Hwang, C. H. Lee and H. H. Cho, Heat transfer and flow structures in an axisymmetric impinging jet controlled by vortex pairing, Int. J. Heat and Fluid Flow, 22 (2001) 293–300.

    Article  Google Scholar 

  8. S. D. Hwang and H. H. Cho, Effects of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: main jet excitation and shear layer excitation, Int. J. Heat Fluid Flow, 24 (2003) 199–209.

    Article  Google Scholar 

  9. J. Kim and H. Choi, Large eddy simulation of a circular jet: effect of inflow conditions in the near field, J. Fluid Mech., 620 (2009) 383–411.

    Article  MATH  Google Scholar 

  10. A. Michalke, On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech., 23 (1965) 521–544.

    Article  MathSciNet  Google Scholar 

  11. S. C. Crow and F. H. Champagne, Orderly structure in jet turbulence, J. Fluid Mech., 48 (1971) 547–591.

    Article  Google Scholar 

  12. J. Vejrazka, J. Tihon, Ph. Marty and V. Sobolik, Effect of an external excitation on the flow structure in a circular impinging jet, Phys. Fluids, 17 (2005) 105102.

    Article  Google Scholar 

  13. M. German, U. Piomelli, P. Moin and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3 (1991) 1760–1765.

    Article  Google Scholar 

  14. D. K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4 (1992) 633–635.

    Article  Google Scholar 

  15. P. Moin, K. Squires, W. Cabot and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3 (1991) 2746–2757.

    Article  MATH  Google Scholar 

  16. K. Akselvoll and P. Moin, An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries, J. Comput. Phys., 125 (1996) 454–463.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Koren, A robust upwind discretization method for advection, diffusion and source terms. In: Vreugehill, C. B., Koren, B. (Eds.), Numerical methods for advection-diffusion problems, Notes on Numerical Fluid Mechanics, 45, Vieweg, Braunschweig (1993) 117–138.

    Google Scholar 

  18. M. Hadziabdic and K. Hanjalic, Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech., 596 (2008) 221–260.

    Article  MATH  Google Scholar 

  19. H. Choi and P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited, Phys. Fluids, 24 (2012) 011702.

    Article  Google Scholar 

  20. R. Gardon and J. C. Akfirat, The role of turbulence in determining the heat transfer characteristics of impinging jets, Int. J. Heat Mass Transfer, 8 (1965) 1261–1272.

    Article  Google Scholar 

  21. T. Cziesla, G. Biswas, H. Chattopadhyay and N. K. Mitra, Large eddy simultion of flow and heat transfer in an impinging slot jet, Int. J. Heat and Fluid Flow, 22 (2001) 500–508.

    Article  Google Scholar 

  22. M. Behnia, S. Parneix and P. A. Durbin, Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate, Int. J. Heat Mass Transfer, 41 (1998) 1845–1855.

    Article  Google Scholar 

  23. N. Uddin, S. O. Neumann and B. Weigand, LES simulations of an impinging jet: On the origin of the second peak in the Nusselt number distribution, Int. J. Heat Mass Transfer, 57 (2013) 356–368.

    Article  Google Scholar 

  24. A. K. M. F. Hussain and M. F. Zedan, Effects of the initial condition on the axisymmetric free shear layer: Effects of the initial momentum thickness, Phys. Fluids, 21 (1978) 1100–1112.

    Article  Google Scholar 

  25. J. Mi, D. S. Nobes and G. J. Nathan, Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet, J. Fluid Mech., 432 (2001) 91–125.

    MATH  Google Scholar 

  26. J. W. Hall and D. Ewing, On the dynamics of the largescale structures in round impinging jets, J. Fluid Mech., 555 (2006) 439–458.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungwoo Kim.

Additional information

Recommended by Associate Editor Donghyun You

Jungwoo Kim obtained his B.S., M.S. degrees and Ph.D. at the Department of Mechanical Engineering, Seoul National University, Korea, in 1999, 2001 and 2005, respectively. Dr. Kim is currently an assistant professor at the Department of Mechanical System Design Engineering, Seoul National University of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J. Active control of impinging jet for modification of mixing. J Mech Sci Technol 28, 927–935 (2014). https://doi.org/10.1007/s12206-013-1160-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-1160-1

Keywords

Navigation