Skip to main content
Log in

Analysis of bioheat transfer equation for hyperthermia cancer treatment

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 26 February 2019

This article has been updated

Abstract

Magnetic fluid hyperthermia is a new subclass of hyperthermia cancer treatment that can selectively heat up a tumor without damaging the surrounding healthy tissues. Some authors studied the temperature distribution of a magnetically mediated tumor assuming a homogeneous distribution of nanoparticles inside the tumor. Practically speaking, the injected nanoparticles do not usually distribute uniformly throughout the entire tumor, thus leaving some parts of the tumor without nanoparticles. In this study, an inhomogeneous dispersion of nanoparticles inside the tumor is assumed to investigate the tissues’ temperature profiles. The problem is solved for polar coordinate. Also in this study, the heating effect of magnetic fluid in a porcine liver tissue is experimentally examined. Numerical transient solutions are found to be in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 26 February 2019

    There is one correction to make to the original article.

References

  1. M. H. Falk and R. D. Issels, Hyperthermia in oncology, International Journal of Hyperthermia, 17(1) (2001) 1–18.

    Article  Google Scholar 

  2. M. H. Seegenschmiedt, P. Fessenden and C. C. Vernon, Thermoradiotherapy and thermochemotherapy, Vol. 1: Biology, Physiology and Physics, Berlin: Springer-Verlag (1995).

    Google Scholar 

  3. R. D. Issels, Hyperthermia adds to chemotherapy, European Journal of Cancer, 44(17) (2008) 2546–2554.

    Article  Google Scholar 

  4. C. W. Song, A. Shakil, R. J. Griffin and K. Okajima, Improvement of tumor oxygenation status by mild temperature hyperthermia alone or in combination with carbogen, Seminars in Oncology, 24(6) (1997) 626–632.

    Google Scholar 

  5. J. van der Zee, Heating the patient: a promising approach? Annals of Oncology, 13(8) (2002) 1173–1184.

    Article  Google Scholar 

  6. Gilchrist, Selective inductive heating of lymph nodes, Annals of Surgery (1957) 146596.

    Google Scholar 

  7. T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji and B. Jeyadevan, Synthesis of magnetite nanoparticles for AC magnetic heating, Journal of Magnetism and Magnetic Materials, 321(19) (2009) 3019–3023.

    Article  Google Scholar 

  8. A. Jordan, R. Scholz, P. Wust, H. F. hling and R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 201 (1999) 413–419.

    Article  Google Scholar 

  9. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials, 252 (2002) 370–374.

    Article  Google Scholar 

  10. G. F. Goya, R. Fernandez-Pacheco, M. Arruebo, N. Cassinellib and M. R. Ibarra, Brownian rotational relaxation and power absorption in magnetite nanoparticles, Journal of Magnetism and Magnetic Materials, 316 (2007) 132–135.

    Article  Google Scholar 

  11. V. Cabuil, V. Dupuis, D. Talbot and S. Neveu, Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size, Journal of Magnetism and Magnetic Materials, 323 (2010) 1238–1241.

    Article  Google Scholar 

  12. C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner and C. Bergemann, et al, Targeting cancer cells: magnetic nanoparticles as drug carriers, European Biophysics Journal, 35 (2006) 446–50.

    Article  Google Scholar 

  13. F. M. Martin-Saavedra, E. Ruiz-Hernandez, A. Bore, D. Arcos and M. Vallet-Regi, Magnetic mesoporous silica spheres for hyperthermia therapy, Acta Biomaterialia, 6 (2010) 4522–4531.

    Article  Google Scholar 

  14. I. Hilger, R. Hiergeist, R. Hergt, K. Winnefeld, H. Schubert, and W. A. Kaiser, Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study, Investigative Radiology, 37 (2002) 580–586.

    Article  Google Scholar 

  15. S. Jones, J. Winter and B. Gray, Treatment of experimental rabbit liver tumours by selectively targeted hyperthermia, International Journal of Hyperthermia, 18 (2002) 117–128.

    Article  Google Scholar 

  16. A. Jordan, R. Scholz and K. Maier-Hauff et al, The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of Neuro-oncology, 78 (2006) 7–14.

    Article  Google Scholar 

  17. H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, 1 (1948) 93–122.

    Google Scholar 

  18. Z. S. Deng and J. Liu, Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, Journal of Biomechanical Engineering, 124 (2002) 638–649.

    Article  Google Scholar 

  19. H. G. Bagaria and D. T. Johnson, Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment, International Journal of Hyperthermia, 21(1) (2005) 57–75.

    Article  Google Scholar 

  20. W. Andra, C. G. d’Ambly, R. Hergt, I. Hilger and W. A. Kaiser, Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 194 (1999) 197–203.

    Article  Google Scholar 

  21. J. W. Durkee, P. P. Antich and C. E. Lee, Exact-solutions to the multiregion time-dependent bioheat equation. 1. Solution development, Physics in Medicine and Biology, 35(7) (1990) 847–867.

    Article  Google Scholar 

  22. M. Suto, H. Kosukegawa, K. Maruta, M. Ohta, K. Tohji and B. Jeyadevan, Heat diffusion characteristics of magnetite nanoparticles dispersed hydro-gel in alternating magnetic field, Journal of Magnetism and Magnetic Materials, 321(20) (2009) 3483–3487.

    Article  Google Scholar 

  23. M. Liangruksa, R. Ganguly and I. K. Puri, Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion, Journal of Magnetism and Magnetic Materials, 323 (2011) 708–716.

    Article  Google Scholar 

  24. N. A. Brusentsov, L. V. Nikitin, T. N. Brusentsova, A. A. Kuznetsov, F. S. Bayburtskiy, L. I. Shumakov and N. Y. Jurchenko, Magnetic fluid hyperthermia of the mouse experimental tumor, Journal of Magnetism and Magnetic Materials, 252 (2002) 378–380.

    Article  Google Scholar 

  25. X. Wang, H. Gu and Z. Yang, The heating effect of magnetic fluids in an alternating magnetic field, Journal of Magnetism and Magnetic Materials, 293 (2005) 334–340.

    Article  Google Scholar 

  26. S. Balivsada1, R. S. Rachakatla1 and H. Wang, A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles, BMC Cancer, 10 (2010) 119.

    Article  Google Scholar 

  27. A. Roggan, Dosimetrie thermischer Laseranwendungen in der Medizin — Untersuchung der optischen Gewebeeigenschaften und physikalisch-mathematische Modellentwicklung, ecomed, Landsberg/Lech (1997) 16.

    Google Scholar 

  28. Annette M. Schmidt, Thermoresponsive magnetic colloids, Colloid Polym Sci, 285 (2007) 953–966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Attar.

Additional information

Recommended by Associate Editor Dongsik Kim

Mohammad Mahdi Attar received his B.S. degree from Bu-Ali Sina University, Hamedan, Iran, in 2005, M.S. degree, in 2008, Shahid CHamran University, Ahwaz, Iran. Eng. Mohammad M. Attar is currently a Ph.D. Candidate at Science and Research Branch, Islamic Azad University, Tehran, Iran. Eng. Attar is also currently a faculty member at the Hamedan Branch, Islamic Azad University, Hamedan, Iran. His research interests are focused on thermal management, Hyperthermia, and Thermal Stress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attar, M.M., Haghpanahi, M., Amanpour, S. et al. Analysis of bioheat transfer equation for hyperthermia cancer treatment. J Mech Sci Technol 28, 763–771 (2014). https://doi.org/10.1007/s12206-013-1141-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-1141-4

Keywords

Navigation