Journal of Mechanical Science and Technology

, Volume 28, Issue 2, pp 489–497 | Cite as

Physical and tribological diagnostic of Ti-(Carbon Nitrides) and Ti-Nb-(Carbon Nitrides) coatings

Article

Abstract

Electrochemical, mechanical and tribological properties of Ti-C-N and Ti-Nb-C-N coatings deposited onto Si (100) and AISI 4140 steel substrates were determined in this work. Introduction of Nb in the ternary Ti C-N film was evaluated via quantitative elemental concentration depth profile by glow discharge optical emission spectroscopy (GDOES) and the morphology via scanning electron microscopy (SEM) were observed for the layers before the tests. The morphological surface was analyzed via AFM. Mechanical and tribological properties for both coatings were obtained by mean of nanoindentation measurements throughload versus displacement method, and scratch test using the critical load criterion, respectively. The failure modes from scratch test were observed via optical microscopy. Nanoindentation results reaching the elastic-plastic behavior of the TiCN and Ti-Nb-C-N coatings with inclusion of Nb (TiNbCN), indicated not only the hardness and elastic modulus but also the critical load for the adhesive failure increase when increasing r.f negative bias voltage. An improvement of hardness and critical load around 60% and 28% for TiCN as well as 26% and 31% for TiNbCN, respectively, was associated to an increasing in the r.f negative bias voltage from 0 V to -100 V.

Keywords

Coating surface Bias voltage Mechanical Tribological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Caicedo, C. Amaya, L. Yate, W. Aperador, G. Zambrano, M. E. Gómez, J. Alvarado-Rivera, J. Muñoz-Saldaña and P. Prieto, Appl. Effect of applied bias voltage on corrosion-resistance for TiC1xNx and Ti1xNbxC1yNy coatings, Surf. Sci., 256 (2010) 2876.CrossRefGoogle Scholar
  2. [2]
    Avi. Raveh, Ido Zukerman, Roni Shneck, Rudi Avni and Ilana Fried. Thermal stability of nanostructured superhard coatings: A review, Surf. Coat. Technol., 201 (2007) 6136.CrossRefGoogle Scholar
  3. [3]
    H. Ehrhardt. New Developments in the Field of Superhard Coatings Surf, Coat. Technol., 74–75 (1995) 29.CrossRefGoogle Scholar
  4. [4]
    B. S. Kim, G. S. Kim, S. Y. Lee and B. Y. Lee. Effects of Al target power on the mechanical and oxidation resistance of the CrN/AlN multilayer coatings, Surf. Coat. Technol., 202 (2008) 5526.CrossRefGoogle Scholar
  5. [5]
    G. Zambrano, P. Prieto, F. Pérez, C. Rincón, H. Galindo, L. Cota-Araiza, J. Esteve and E. Martinez. Hardness and morphological characterization of tungsten carbide thin films, Surf. Coat. Technol., 108–109 (1998) 323.CrossRefGoogle Scholar
  6. [6]
    P. C. Yashar and W. D. Sproul. Nanometer scale multilayered hard coatings, Vacuum, 55 (1999) 179.CrossRefGoogle Scholar
  7. [7]
    E. H. J. Danen and A. Sonnenberg. A. Integrins in regulation of tissue development and function, J. Pathol, 201(4) (2003) 632.CrossRefGoogle Scholar
  8. [8]
    D. V. Shtansky, Nanostructured thin films and nanodispersion strengthened coatings, 1st ed., Springer, Moscow, Russia (2004) 155–166.CrossRefGoogle Scholar
  9. [9]
    V. I. Tretyakov and V. L. Mashevskaya. Effect of tantalum on the properties and structure of hard alloys based on titanium carbonitride, Powder Metall, Met. Ceram, 38(1–2) (1999) 64.CrossRefGoogle Scholar
  10. [10]
    F. Qi and S. Kang. A study on microstructural changes in Ti(CN)-NbC-Ni cermets, Mater. Sci. Eng., A.251 (1998) 276.CrossRefGoogle Scholar
  11. [11]
    H. Riascos, J. Neidhardt, G. Z. Radnoczi, J. Emmerlich, G. Zambrano, L. Hultman and P. Prieto. Structure and properties of pulsed-laser deposited carbon nitride thin films, Thin Solid Films, 497 (2006) 1.CrossRefGoogle Scholar
  12. [12]
    M. Pancielejko and W. Precht. tructure, chemical and phase composition of hard titanium carbon nitride coatings deposited on HS 6-5-2 steel, J. Mater. Process. Technol., 157 (2004) 394.CrossRefGoogle Scholar
  13. [13]
    M. Balaceanu, V. Braic, M. Braic, A. Vladescu, C. N. Zoita, C. E. A. Grigorescu, E. Grigore and R. Ripeanu. Characteristics of Ti-Nb, Ti-Zr and Ti-Al containing hydrogenated carbon nitride films, Solid State Sciences, 11 (2009) 1773.CrossRefGoogle Scholar
  14. [14]
    W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564.CrossRefGoogle Scholar
  15. [15]
    G. S. Kim, S. Y. Lee and J. H. Hahn. Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol., 171 (2003) 91.CrossRefGoogle Scholar
  16. [16]
    V. Hajek, K. Rusnak, J. Vlcek, L. Martinu and H. M Hawthorne. Tribological study of CNx films prepared by reactive d.c. magnetron sputtering, Wear, 213 (1997) 80.CrossRefGoogle Scholar
  17. [17]
    P. Hedenqvis and S. Hogmark, Experiences from scratch testing of Tribological PVD coatings, Tribology International, 30 (1997) 507.CrossRefGoogle Scholar
  18. [18]
    G. Cabrera, J.C. Caicedo, C. Amaya, L. Yate, J. Muñoz Saldañad, P. Prieto. Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating, Materials Chemistry and Physics, 125 (2011) 576–586.CrossRefGoogle Scholar
  19. [19]
    S. J. Bull, D. S. Rickerby, A. Matthews, A. Leyland, A. R. Pace and J. Valli. The use of scratch adhesion testing for the determination of interfacial adhesion: The importance of frictional drag, Surf. Coat. Technol., 36 (1988) 503.CrossRefGoogle Scholar
  20. [20]
    P. J. Burnett and D. S. Rickerby. The relationship between hardness and scratch adhession, Thin Solid Films, 154 (1987) 403.CrossRefGoogle Scholar
  21. [21]
    K. Holmberg and A. Matthews, COATINGS TRIBOLOGY Properties, Techniques and Applications in Surface Engineering, 1st ed., (ELSEVIER, Gt. Britain) (1994) 40–50.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Powder Metallurgy and Processing of Solid Recycled Research GroupUniversidad del ValleCaliColombia
  2. 2.Thin films groupUniversidad del ValleCalleCaliColombia
  3. 3.Ingeniería MecatrónicaUniversidad Militar Nueva GranadaBogotáColombia
  4. 4.Department of BioengineeringUniversity of IllinoisChicagoUSA
  5. 5.Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoUSA

Personalised recommendations