N. Joukowsky, Über den hydraulischen Stoss in Wasserleitungsröhren (On the hydraulic hammer in water supply pipes) Mémoires de l’AcadémieImpériale des Sciences deSt.-Pétersbourg, Series 8, 9(5) (1898) 1–71 (in German).
Google Scholar
A. Bergant, A. Tijsseling, J. P. Vítkovský, D. Covas, A. Simpson and M. Lambert, Further investigation of parameters affecting water hammer wave attenuation, shape and timing. Part 1: Mathematical tools, Proc. of the 11th International Meeting of the IAHR Work Group on the Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions, Stuttgart, Germany (2003) 1–12.
M. S. Ghidaoui, M. Zhao, D. A. McInnis and D. H. Axworthy, A review of water hammer theory and practice, Applied Mechanics Review, ASME, 58(1) (2005) 49–76.
Article
Google Scholar
W. Tian, G. H. Su, G. Wang, S. Qiu and Z. Xiao, Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feed water system, Annals of Nuclear Energy, 35(12) (2008) 2280–2287.
Article
Google Scholar
W. Barten, A. Jasiulevicius, A. Manera, R. Macian-Juan and O. Zerkak, Analysis of the capability of system codes to model cavitation water hammers: Simulation of UMSCIT water hammer experiments with TRACE and RELAP5, Nuclear Engineering and Design, 238 (2008) 1129–1145.
Article
Google Scholar
A. Ismaier and E. Schlücker, Fluid dynamic interaction between water hammer and centrifugal pumps, Nuclear Engineering and Design, 239(12) (2009) 3151–3154.
Article
Google Scholar
K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II, KANGAL Rep. No. 200001, Indian Institute of Technology, Kanpur, India (2000).
Google Scholar
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A Fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans actions on Evolutionary Computation, 6(2) (2002) 182–197.
Article
Google Scholar
M. R. Reed and B. S. Minsker, Striking the balance longterm groundwater monitoring design for conflicting objectives, Journal of Water Resource Planning and Management, ASCE, 130(2) (2004) 140–149.
Article
Google Scholar
S. R. M. Yandamuri, K. Srinivasan and S. M. Bhallamudi, Multiobjective optimal waste load allocation models for rivers using Non-dominated sorting genetic algorithm-II, Journal of Water Resources Planning and Management, ASCE; 132(3) (2006) 133–43.
Article
Google Scholar
M. R. Bazargan-Lari, R. Kerachian and A. Mansoori, A conflict resolution model for conjunctive use of surface and groundwater resources considering the water-quality issues: A case study, Environmental Management, 43(3) (2009) 470–482.
Article
Google Scholar
R. Kerachian, M. Fallahnia, M. R. Bazargan-Lari, A. Mansoori and H. Sedghi, A fuzzy game theoretic approach for groundwater resources management: Application of Rubinstein Bargaining Theory, Journal of Resource, Conservation and Recycling, 54(10) (2010) 673–682.
Article
Google Scholar
H. Afshar, R. Kerachian, M. R. Bazargan-Lari and A. R. Niktash, Developing a closing rule curve for valves in pipelines to control the water hammer impacts: Application of the NSGA-II optimization model, Proc. of International Pipelines Conference 2008, American Society of Civil Engineering (ASCE), Atlanta, Georgia, USA (2008) 1–10.
J. S. Lee, B. K. Kim, W. R. Lee and K. Y. Oh, Analysis of water hammer in pipelines by partial fraction expansion of transfer function in frequency domain, Journal of Mechanical Science and Technology, 24(10) (2010) 1975–1980.
Article
Google Scholar
M. Rohani and M. H. Afshar, Simulation of transient flow caused by pump failure: Point-Implicit Method of Characteristics. Annals of Nuclear Energy, 37(12) (2010) 1742–1750.
Article
Google Scholar
K. Hariri-Asli, F. B. O. Naghiyeh and K. A. Haghi, Some aspects of physical and numerical modeling of water hammer in pipelines, International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 60(4) (2010) 677–701.
Article
Google Scholar
E. B. Wylie and V. L. Streeter, Fluid Transients, First Ed. McGraw-Hill, New York, USA (1978).
Google Scholar
E. B. Wylie and V. L. Streeter, Fluid Transients in Systems, First Ed., Prentice Hall, Englewood Cliffs, New Jersey, USA (1993).
Google Scholar
D. Mokeddem and A. Khellaf, Optimal solutions of multiproduct batch chemical process using multiobjective genetic algorithm with expert decision system, Journal of Automated Methods and Management in Chemistry, Volume 2009, Article ID 927426 (2009) doi:10.1155/2009/927426.
S. E. Fienberg, When did Bayesian inference become Bayesian?, Bayesian Analysis, 1(1) (2006) 1–40.
MathSciNet
Article
Google Scholar
W. Buntine, A guide to the literature on learning probabilistic network from data, IEEE Transactions on Knowledge and Data Engineering, 8(2) (1996) 195–210.
Article
Google Scholar
F. V. Jensen, Bayesian Networks and Decision Graphs, First Ed. Springer-Verlag, New York, USA (2001).
MATH
Google Scholar
P. Congdon, Bayesian Statistical Modelling, Second Ed. Wiley, New York, USA (2001).
MATH
Google Scholar
S. Dorner, J. Shi and D. A. Swayne, Multi-objective modelling and decision support using a Bayesian network approximation to a non-point source pollution model, Environmental Modelling and Software, 22(2) (2007) 211–222.
Article
Google Scholar
D. N. Barton, T. Saloranta, S. J. Moe, H. O. Eggestad and S. Kuikka, Bayesian belief networks as a meta-modelling tool in integrated river basin management — Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin, Ecological Economics, 66 (2008) 91–104.
Article
Google Scholar
S. M. Mesbah, R. Kerachian and M. R. Nikoo, Developing real time operating rules for trading discharge permits in rivers: Application of Bayesian Networks, Environmental Modeling and Software, 24(2) (2009) 238–246.
Article
Google Scholar
B. Malekmohammadi, R. Kerachian and B. Zahraie, Developing Monthly Operating Rules for a Cascade System of Reservoirs: Application of Bayesian Networks, Environmental Modelling & Software, 24(12) (2009) 1420–1432.
Article
Google Scholar
I. Malekmohamadi, M. R. Bazargan-Lari, R. Kerachian, M. R. Nikoo and M. Fallahnia, Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction, Ocean Engineering, 38(2–3) (2011) 487–497.
Article
Google Scholar
P. A. Aguilera, A. Fernandez, R. Fernandez, R. Rumi and A. Salmeron, Bayesian networks in environmental modeling, Environmental Modeling and Software, 26(12) (2011) 1376–1388.
Article
Google Scholar
A. Abed-Elmdoust and R. Kerachian, Wave height prediction using the rough set theory, Ocean Engineering, 54 (2012), 244–250, DOI: 10.1016/j.oceaneng.2012.07.020.
Article
Google Scholar
R. E. Neapolitan, Learning Bayesian networks, First Ed. Prentice Hall Series in Artificial Intelligence (2003).