Skip to main content
Log in

Precise spring constant assignment in elastic network model for identification of vibration frequency and modeshape

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We presented a feasible framework of studying dynamics of macromolecules by applying elastic network model (ENM) and vibration spectroscopy. We first identified the precise force constants of covalent bonds commonly observed in macromolecules by matching their reported Raman shifts data with predicted wavenumbers determined by normal mode analysis (NMA). Assigning the obtained spring constants to other small chemical compounds such as ethynyl isocyanide (C3HN) and diacetylene (C4H2), we not only predicted their vibration wavenumbers precisely but also identified their individual mode shapes from NMA. We extensively tested this chemical information based ENM with one of amino acids, cysteine. Subsequent comparison of frequencies and modeshapes also yields a strong agreement between computed and experimental data. Consequently, the proposed method enables us to identify low frequency modeshapes that are in general functionally important collective motions of macromolecules but have hardly been revealed experimentally even using terahertz spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Millen, Determination of stretching force constants of weakly bound dimers from centrifugal distortion constants, Can. J. Chem. 63 (1985) 1477–1479.

    Article  Google Scholar 

  2. P. Phillipson, Electronic Bases of Molecular Vibrations. I. General Theory for Diatomic Molecules, J. Chem. Phys. 39 (1963) 3010–3016.

    Article  Google Scholar 

  3. B. K. Novosadov, Forces in molecules equations for the calculation of force constants, J. Struct. Chem. 16(6) (1975) 891–894.

    Article  Google Scholar 

  4. V. I. Bazhanov, Statistical method for determination of structural parameters of molecules from electron diffraction data, J. Struct. Chem. 27(1) (1986) 30–35.

    Article  Google Scholar 

  5. A. Navarro, M. P. Fernandez-Liencres, A. Ben Altabef, M. F. Gomez, J. J. L. Gonzalez and R. Escribano, A set of force constants common for SiH3-X molecules, J. Mol. Struct. 482 (1999) 601–607.

    Article  Google Scholar 

  6. K. Venkateswarlu and S. Sundaram, Evaluation of Force Constants from Raman Effect Data: Molecules, Radicals and Groups of Pyramidal XY3 Type, Proc. Phys. Soc. A. 69 (1955) 180–183.

    Article  Google Scholar 

  7. O. Alvarez-Bajo, M. Sanchez-Castellanos, C. A. Amezcua-Eccius and R. Lemus, Force constants and transition intensities in the U(v+1) model for molecular vibrational excitations, J. Mol. Spectrosc. 237 (2006) 247–258.

    Article  Google Scholar 

  8. L. Bizzocchi, C. D. Esposti, A. Mazzavillani and F. Tamassia, Fourier transform infrared spectroscopy of the 2 nu(3) overtone band of different ICN isotopomers: an improved evaluation of the anharmonic force field of cyanogen iodide, J. Mol. Spectrosc. 221 (2003) 213–220.

    Article  Google Scholar 

  9. A. E. Özel, Y. Büyükmurat and S. Akyüz, Infrared-spectra and normal-coordinate analysis of quinoline and quinoline complexes, J. Mol. Struct. 565 (2001) 455–462.

    Article  Google Scholar 

  10. P. D. Kieng, A. B. Kovrikov and A. I. Komyak, Estimating force constants and calculating normal oscillations of the (U O2C14 · 2H2O)2- anionic complex in a rubidium uranyl chloride crystal, J. App. Spec. 18(3) (1973) 336–340.

    Article  Google Scholar 

  11. M.C. Gupta, Atomic and Molecular Spectroscopy, New Age International(P) Limited, New Delhi, (2001).

    Google Scholar 

  12. M. K. Kim, G. S. Chirikjian, R. L. Jernigan, Elastic models of conformational transitions in macromolecules, J. Mol. Grap. Model. 21 (2002) 151–160.

    Article  Google Scholar 

  13. M. K. Kim, R. L. Jernigan, G. S. Chirikjian, Efficient generation of feasible pathways for protein conformational transitions, Biophysical J. 83 (2002) 1620–1630.

    Article  Google Scholar 

  14. M. K. Kim, Li. W., B. A. Shapiro, G. S. Chirikjian, A comparison between elastic network interpolation and MD simulation for 16S Ribosomal RNA, J. Biomol. Struct. and Dyn. 21 (2003) 395–405.

    Google Scholar 

  15. M. K. Kim, R. L. Jernigan, G. S. Chirikjian, An elastic network model of HK97 capsid maturation, J. Struct. Biol. 143 (2003) 107–117.

    Article  Google Scholar 

  16. M. K. Kim, R. L. Jernigan, G. S. Chirikjian, Rigid-cluster models of conformational transitions in macromolecular machines and assemblies, Biophysical J. 89 (2005) 43–55.

    Article  Google Scholar 

  17. M. K. Kim, Y. Jang, J. I. Jeong, Using harmonic analysis and optimization to study macromolecular dynamics, Int. J. Control Autom. Syst. 4 (2006) 382–393.

    Google Scholar 

  18. Y. Jang, J. I. Jeong, M. K. Kim, UMMS: constrained harmonic and anharmonic analyses of macromolecules based on elastic network models, Nucleic Acids Research 34 (2006) W57–W62.

    Article  Google Scholar 

  19. J. I. Jeong, Y. Jang, M. K. Kim, A connection rule for alpha-carbon coarse-grained elastic network model using chemical bond information, J. Mol. Grap. Model. 24 (2006) 296–306.

    Article  Google Scholar 

  20. T. Shimanouchi, Tables of Molecular vibrational Frequencies, Consolidated. Volume I, Superintendent of Documents-U.S. Government Printing Office, (1972).

  21. M. E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, Journal of Physical and Chemical Reference Data, (1994).

  22. O. V. Dorofeeva and L. V. Gurvich, Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds: Part I. Polyacetylenes, H(C ≡ C)nH (n = 2–6), cyanopolyacetylenes, H(C ≡ C)nC ≡ N (n = 1–5), and dicyanopolyacetylenes, N ≡ C(C ≡ C)nC ≡ N (n = 1−4), Thermochimica Acta, 12 (1991) 273–286.

    Article  Google Scholar 

  23. T. Y. Wu and S. T. Shen, Chin, On the Force Constants and Fundamental Vibrations of Diacetylene, J. Phys. 2 (1936) 128.

    Google Scholar 

  24. S. M. Ferigle, F. F. Cleveland and A. G. Meister, Force Constants and Fundamental Frequencies of Dimethyldiacetylene and Diacetylene, Phys. Rev. 81 (1951) 302.

    Google Scholar 

  25. G. Herzberg. Infrared and Raman spectra of polyatomic molecules, Van Nostrand Reinhold, New York, USA, (1945).

    Google Scholar 

  26. G. C. Turrell, Infrared Spectra and Force Constants of Cyanoacetylene, J. Chem. Phys. 26 (1957) 1544.

    Article  Google Scholar 

  27. J. Cz. Dobrowolski, J. E. Rode and J. Sadlej, Cysteine conformations revisited, J. Mol. Struct. 810 (2007) 129–134.

    Google Scholar 

  28. A. Fernandez-Ramosa, E. Cabaleiro-Lagoa, J. M. Hermida- Ramona, E. Martınez-Nuneza and A. Pena-Gallegoa, DFT conformational study of cysteine in gas phase and aqueous solution, J. Mol. Struct. 498 (2000) 191–200.

    Google Scholar 

  29. C. C. Wang, J. H. Chen, S. H. Yin and W. J. Chuang, Predicting the redox state and secondary structure of cysteine residues in proteins using NMR chemical shifts, Proteins 63 (2006) 219–226.

    Article  Google Scholar 

  30. M. Noguera, L. Rodriguez-Santiago, M. Sodupe and J. Bertran, Protonation of glycine, serine and cysteine. Conformations, proton affinities and intrinsic basicities, J. Mol. Struct. 537 (2001) 307–318.

    Google Scholar 

  31. S. Z. Liu, H. Q. Wang, Z. Y. Zhou, X. L. Dong and X. L. Gong, Theoretical study of helical structure caused by chirality of cysteine dimer, Int. J. Quant. Chem. 105 (2005) 66–73.

    Article  Google Scholar 

  32. K. A. Kerr, J. P. Ashmore and T. F. Koetzle, A neutron diffraction study of L-cysteine, Acta Cryst. B 31 (1975) 2022–2026.

    Article  Google Scholar 

  33. P. Tarakeshwar and S. Manogaran, Vibrational frequencies of cysteine and serine zwitterions-an ab initio assignment, J. Mol. Struct. 305 (1994) 205–224.

    Google Scholar 

  34. S. Gronert and R. A. J. O’Hair, Ab Initio studies of amino acid conformations. 1. The conformers of alanine, serine, and cysteine, J. Am. Chem. Soc. 117 (1995) 2071–2081.

    Article  Google Scholar 

  35. P. Tarakeshwar and S. Manogaran, Vibrational frequencies of cysteine and serine zwitterions-an ab initio assignment, Spectrochimica Acta. Part A 51 (1995) 925–928.

    Article  Google Scholar 

  36. N. N. Brandt, A. Y. Chikishev, A. V. Kargovsky, M. M. Nazarov and O. D. Parashchuk, Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges, Vib. Spec. 47 (2008) 53–58.

    Article  Google Scholar 

  37. A. Barth, The infrared absorption of amino acid side chains, Prog. Biophys. Mol. Biol. 74 (2000) 141–173.

    Article  Google Scholar 

  38. N. Wright, The infra-red absorption spectra of the stereoisomers of cysteine, J. Biol. Chem. 120 (1937) 641–646.

    Google Scholar 

  39. V. Krishnakumar, N. Prabavathi and S. Muthunatesan, Density functional theory study of vibrational spectra, and assignment of fundamental vibrational modes of 1-bromo 4-fluoronaphthalene, Spectrochimica Acta Part A 70 (2008) 201–209.

    Article  Google Scholar 

  40. V. Krishnakumar, R. John Xavier, FT Raman and FT-IR spectral studies of 3-mercapto-1,2,4-triazole. Spectrochimica Acta Part A 60 (2004) 709–714.

    Article  Google Scholar 

  41. F. P. Ureña, M. F. Gómez, J. L. González and E. M. Torres, A new insight into the vibrational analysis of pyridine, Spectrochimica Acta Part A 59 (2003) 2815–2839.

    Article  Google Scholar 

  42. V. P. Morozov, V. V. Belokopytov, G. D. Zegzhda and V. N. Moiseenko, Force constants and vibration frequencies and forms of the coordination center of cysteine-containing chromium trischelates, J. Struct. Chem. 39 (1998) 508–513.

    Article  Google Scholar 

  43. M. E. Tuttolomondo, L. E. Fernández, A. Navarro, E. L. Varetti and A. Ben Altabef, Experimental and theoretical vibrational study of 2,2,2-trifluoroethyl trifluoromethanesulfonate, CF3SO2OCH2CF3, Spectrochimica Acta Part A 60 (2004) 611–619.

    Article  Google Scholar 

  44. N. Go, T. Noguti and T. Nishikawa, Dynamics of a small globular protein in terms of low-frequency vibrational modes, Proc. Nati Acad. Sci. USA 80 (1983) 3696–3700.

    Article  Google Scholar 

  45. A. Barth and C. Zscherp, What vibrations tell us about proteins, Q. Rev. of Biophys. 35 (2002) 369–430.

    Article  Google Scholar 

  46. T. M. Korter, R. Balu, M. B. Campbell, M. C. Beard, S. K. Gregurick and E. J. Heilweil, Terahertz spectroscopy of solid serine and cysteine, Chem. Phys. Lett. 418 (2006) 65–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Ki Kim.

Additional information

This paper was recommended for publication in revised form by Associate Editor Yong-Tae Kim

Mingwen Hu received the B.S. degree in Mechanical Engineering from Yuan Ze University in 2002 and then the M.S. degree in Mechanical and Mechatronic Engineering from National Taiwan Ocean University in 2004. He is currently pursuing the Ph.D. degree in Mechanical and Industrial Engineering, University of Massachusetts-Amherst. His researches focus on investigating macromolecules by experimental and theoretical approaches which include vibrational spectroscopy and elastic network model.

Byung Kim received the B.S. in Mechanical Engineering from UC Berkeley in 1978, M.S. and Ph.D. in Mechanical Engineering from MIT in 1980 and 1983, respectively. He has joined the faculty member in the department of Mechanical and Industrial Engineering at the University of Massachusetts, Amherst since 1983. His research interests are in the area of micro and nanomanufacturing, SERS, protein dynamics.

Wing Kam Liu obtained by B.S. with the highest honor from from the University of Illinois at Chicago Circle in 1976 and received his M.S in 1977 and Ph.D. in 1981, both from California Institute of Technology. He is the Walter P. Murphy Professor of Mechanical Engineering Department of Northwestern University, Founding Director of the NSF Summer Institute on Nano Mechanics and Materials, and Founding Chairman of the prestigious ASME NanoEngineering Council. Multiresolution continuum theory and immersed finite element method are his main research interests.

Moon Ki Kim received the B.S. and M.S. degrees in Mechanical Engineering from Seoul National University in 1997 and 1999, respectively, and the M.S.E. and Ph.D. degrees from The Johns Hopkins University in 2002 and 2004, respectively. He had been an Assistant Professor in the department of Mechanical and Industrial Engineering at University of Massachusetts, Amherst from 2004 to 2008. He has worked for School of Mechanical Engineering at Sungkyunkwan University as an associate professor since 2009. His research interests are focused on computational structural biology based on robot kinematics, bioinstrumentations, and multiscale modeling and simulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Raj, S., Kim, B. et al. Precise spring constant assignment in elastic network model for identification of vibration frequency and modeshape. J Mech Sci Technol 24, 1771–1780 (2010). https://doi.org/10.1007/s12206-010-0631-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-010-0631-x

Keywords

Navigation