Skip to main content
Log in

Fluid-particle interaction simulations of the interception of red blood cells in shear flow

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Numerical simulations of the motion of red blood cells (RBCs) freely suspended in shear flow have been successfully performed to investigate the nature of pairwise interception of RBCs using a fluid-particle interaction method based on the arbitrary Lagrangian-Eulerian (ALE) method and a dynamic mesh method. The applicability of the interaction method that we used was validated by comparing the simulation results with an analytical solution for an elliptical particle in shear flow. We found that positive and negative transverse shifts of the RBCs take place during the interceptions, yielding a non-zero RBC self-diffusivity, and that a phase shift occurs during the rotating behavior and lasts even after the separation. The behaviors of the approaching RBCs are adjusted by interactions with the surrounding flow fields during interception. The pressure between a pair of RBCs causes either an attractive or repulsive force. The nature of the pairwise interception is influenced not only by the flow fields but also by kinematic characteristics (i.e., instantaneous translational and rotational behavior) of the two RBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Hu, Direct simulation of flows of solid-liquid mixtures, Int. J. Multiphase Flow, 22 (1996) 335–352.

    Article  MATH  Google Scholar 

  2. J. J. Feng, P. Huang and D. D. Joseph, Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid, J. Non-Newtonian Fluid Mech., 26 (1996) 63–88.

    Article  MATH  Google Scholar 

  3. H. H. Hu, M. Y. Zhu and N. Patankar, Direct numerical simulations of fluid solid systems using the arbitrary Lagrangian Eulerian technique, J. Comput. Phys., 169 (2001) 427–462.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Gao and H. H. Hu, Deformation of elastic particles in viscous shear flow, J. Comput. Phys., 228 (2009) 2132–2151.

    Article  MATH  Google Scholar 

  5. R. Lima, T. Ishikawa, Y. Imai, M. Takeda, S. Wada and T. Yamaguchi, Radial dispersion of red blood cells in blood flowing through glass capillaries: The role of hematocrit and geometry, J. Biomech., 41 (2008) 2188–2196.

    Article  Google Scholar 

  6. G. B. Jeffery, The Motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 102 (1922) 161–179.

    Article  Google Scholar 

  7. S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120 (1982) 27–47.

    Article  MATH  Google Scholar 

  8. F. Rioual, T. Biben and C. Misbah, Analytical analysis of a vesicle tumbling under a shear flow, Phys. Rev. E: Stat. Phys. Plasmas Fluids, 69 (2004) 061914.

    Google Scholar 

  9. M. Abkarian, M. Faivre and A. Viallat, Swinging of red blood cells under shear flow, Phys. Rev. Lett., 98 (2007) 188302.

    Article  Google Scholar 

  10. J. M. Skotheim and T. W. Secomb, Red blood cells and other non-spherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition, Phys. Rev. Lett., 98 (2007) 078301.

    Article  Google Scholar 

  11. R. R. Huilgol and N. Phan-Thien, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam, (1997).

    Google Scholar 

  12. D. I. Dratler and W. R. Schowalter, Dynamic simulation of suspensions of non-Brownian hard spheres, J. Fluid Mech., 325 (1996) 53–77.

    Article  MATH  Google Scholar 

  13. D. I. Dratler, W. R. Schowalter and R. L. Hoffman, Dynamic simulation of shear thickening in concentrated colloidal suspensions, J. Fluid Mech., 353 (1997) 1–30.

    Article  MATH  Google Scholar 

  14. J. J. Stickel and R. L. Powell, Fluid mechanics and rheology of dense suspensions, Ann. Rev. Fluid Mech., 37 (2005) 129–149.

    Article  MathSciNet  Google Scholar 

  15. N. Phan-Thien, X. J. Fan, R. I. Tanner and R. Zheng, Folgar-Tucker constant for a fiber suspension in a Newtonian fluid, J. Non-Newtonian Fluid Mech., 103 (2002) 251–260.

    Article  MATH  Google Scholar 

  16. S. Chandrasekhar, Liquid crystals, Cambridge University Press, Cambridge, (1992).

    Book  Google Scholar 

  17. M. Doi and S. F. Edwards, The theory of polymer dynamics, Oxford University Press, New York, (1986).

    Google Scholar 

  18. B. J. Yoon and S. Kim, A boundary collocation method for the motion of two spheroids in Stokes flow; hydrodynamic and colloidal interaction, Int. J. Multiphase Flow, 16 (1990) 639–649.

    Article  MATH  Google Scholar 

  19. C. J. S. Petrie, The rheology of fibre suspensions, J. Non-Newtonian Fluid Mech., 87 (1999) 369–402.

    Article  MATH  Google Scholar 

  20. C. Pozrikidis, Orientation statistics and effective viscosity of suspensions of elongated particles in simple shear flow, Eur. J. Mech. B. Fluids, 24 (2005) 125–136.

    Article  MATH  Google Scholar 

  21. C. Pozrikidis, Interception of two spheroidal particles in shear flow, J. Non-Newtonian Fluid Mech., 136 (2006) 50–63.

    Article  Google Scholar 

  22. E. A. Evans and R. Skalak, editors. Mechanics and thermodynamics of biomembranes, CRC Press, Boca Raton, FL, (1980).

    Google Scholar 

  23. J. Li, M. Dao, C. T. Lim and S. Suresh, Spectrin-level Modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J., 88 (2005) 3707–3719.

    Article  Google Scholar 

  24. R. Skalak and S. Chien, Handbook of Bioengineering, McGraw-Hill, New York, (1987).

    Google Scholar 

  25. FLUENT 6.3 documentation, ANSYS.

  26. S. R. Keller, A model for erythrocyte tank-treading motion in a shear flow. In 1979 Advances in Bioengineering (ed. M. K. Wells), A.S.M.E., (1979) 125–127.

  27. C. Migliorini, Y. Qian, H. Chen, E. B. Brown, R. K. Jain and L. L. Munn, Red blood cells augment leukocyte rolling in a virtual blood vessel, Biophys. J., 83 (2002) 1834–1841.

    Article  Google Scholar 

  28. C. Sun, C. Migliorini and L. L. Munn, Red blood cells initiate leukocyte rolling in postcapillary expansions: A lattice Boltzmann analysis, Biophys. J., 85 (2003) 208–222.

    Article  Google Scholar 

  29. C. Sun, L. L. Munn, Lattice-Boltzmann simulation of blood flow in digitized vessel networks, Computers and Mathematics with Applications, 55 (2008) 1594–1600.

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Neu and H. J. Meiselman, Depletion-mediated red blood cell aggregation in polymer solutions, Biophys. J., 83 (2002) 2482–2490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Nyung Kim.

Additional information

This paper was recommended for publication in revised form by Associate Editor Haecheon Choi

Choeng Ryul Choi is researching at the Department of Mechanical Engineering, College of Engineering, Kyung Hee University. He is interested in computational fluid dynamics, fluid-structure interaction, and physics of complex system

Chang Nyung Kim is a full professor of the Department of Mechanical Engineering, College of Engineering, Kyung Hee University in the Republic of Korea. His research focuses on computational fluid dynamics, micro-fluidic flow, heat transfer, biomechanics, and environmental fluid mechanics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, C.R., Kim, C.N. Fluid-particle interaction simulations of the interception of red blood cells in shear flow. J Mech Sci Technol 24, 1451–1463 (2010). https://doi.org/10.1007/s12206-010-0421-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-010-0421-5

Keywords

Navigation