Skip to main content
Log in

Characteristics of vertically injected buoyant jets of highly diluted propane

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In coflow jets with the nozzle diameter of O (1 cm) and the fuel jet velocity of O (10 cm/s), the buoyancy induced by the density difference between the fuel and air influences the jet structure appreciably. The present study investigated the behavior of such a buoyant jet numerically and experimentally, especially when the fuel stream had higher density than air. When the fuel jet was composed of propane highly diluted with nitrogen, the fuel jet was decelerated and formed a stagnation region. Consequently, the fuel was carried downstream by the coflow having a circular cone shape. When the fuel was moderately diluted or as the jet velocity increased, numerical results showed the Kelvin-Helmholtz type instability along the mixing layer of the jet. When the fuel jet velocity was relatively high, the stagnation height increased nonlinearly with fuel jet velocity having the power of approximately 1.62. In the relatively high Reynolds number regime of Re > 80, the stagnation height can be correlated to Re0.62Ri−0.5, indicating the combined effects of buoyancy and jet momentum. As the Reynolds number becomes small, the stagnation height was affected by the streamwise diffusion due to fuel concentration gradient and by the wake behavior near the nozzle tip. Accordingly, the stagnation heights approach to none-zero values, which were found to be relatively insensitive to fuel dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Plessing, T. Terhoevven, N. Peters and M. S. Mansour, An experimental and numerical study of a liminar triple flame, Combustion and Flame, 115 (1998) 335–353.

    Article  Google Scholar 

  2. S. H. Won, S. H. Chung, M. S. Cha and B. J. Lee, Lifted flame stabilization in developing and developed regions of coflow jets for highly diluted propane, Proc. Combust. Inst., 28 (2000) 2093–2099.

    Article  Google Scholar 

  3. J. Y. Hwang, W. Lee, G. G. Kang and S. H. Chung, Synergistic effect of ethylene-propane mixture on soot formation in laminar diffusion flames, Combustion and Flame, 114 (1998) 370–380.

    Article  Google Scholar 

  4. J. Kim, S. H. Won, M. K. Shin and S. H. Chung, Numerical simulation of oscillating lifted flames in coflow jets with highly diluted propane, Proc. Combust. Inst., 29 (2002) 1589–1595.

    Article  Google Scholar 

  5. J. Kim, K. N. Kim, O. Fujita, J. Takahashi and S. H. Chung, Numerical simulation and parabolic flight test on oscillating lifted flames in coflow jets with gravity level variation, Combustion and Flame, 145 (2006) 181–193.

    Article  Google Scholar 

  6. S. Mahalingam, B. J. Cantwell and J. H. Ferziger, Nonpremixed combustion: full numerical simulation of a coflowing axisymmetric jet, inviscid and viscous stability analysis, Report TF-43, Thermosciences Division, Stanford University, Stanford, CA., (1989).

    Google Scholar 

  7. H. N. Najm, P. S. Wyckoff and O. M. Knio, A semi-implicit numerical scheme for reacting flow (I. Stiff Chemistry), J. Comput. Phy., 143 (1998) 381–402.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. J. Kee, F. M. Rupley and J. A. Miller, CHEMKIN-II: A fortran chemical kinetics package for the analysis of gasphase chemical kinetics, Sandia National Laboratories Report, SAND89-8009, (1989).

  9. R. J. Kee, J. Warnatz and J. A. Miller, A fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients, Sandia National Laboratories Report, SAND 83-8209, (1983).

  10. S. H. Chung and C. K. Law, Burke-Schumann flame with streamwise and preferential diffusion, Combust. Sci. Technol., 37 (1984) 21–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Chung.

Additional information

This paper was recommended for publication in revised form by Associate Editor Ohchae Kwon

Suk Ho Chung received his B. S. degree in Mechanical Engineering in 1976 from Seoul National University, and his M.S. and Ph. D. degree in Mechanical Engineering in 1980 and 1983, respectively from Northwestern University. He is a professor since 1984 in the school of Mechanical Aerospace Engineering, Seoul National University. His research interests cover combustion fundamentals, pollution formation, and lase diagnostics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, K.W., Kim, J., Won, S.H. et al. Characteristics of vertically injected buoyant jets of highly diluted propane. J Mech Sci Technol 24, 865–871 (2010). https://doi.org/10.1007/s12206-010-0311-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-010-0311-x

Keywords

Navigation