Journal of Mechanical Science and Technology

, Volume 24, Issue 4, pp 899–908 | Cite as

Thermodynamic second law analysis for a gravity-driven variable viscosity liquid film along an inclined heated plate with convective cooling

Article

Abstract

The inherent irreversibility and thermal stability in a gravity-driven temperature-dependent variable viscosity thin liquid film along an inclined heated plate with convective cooling is investigated. In this study, both the isothermal and isoflux heating of the plate are considered. The free surface of the liquid film is assumed to exchange heat with the surroundings following Newton’s cooling law and the fluid viscosity model varies as an inverse linear function of the temperature. Analytical solutions are constructed for the governing boundaryvalue problem, and important properties of velocity and temperature fields such as thermal stability criterion are obtained. Expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field are also obtained and discussed quantitatively.

Keywords

Inclined plate Liquid film Variable viscosity Thermal stability Convective cooling Entropy analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. I. Anderson, The momentum integral approach to laminar thin film flow, Proc. ASME Symp. on Thin Fluid Films, Cincinatti, OH, FED., 48 (1987) 7–13.Google Scholar
  2. [2]
    G. Astarita, G. Marrucci and G. Palumbo, Non-Newtonian gravity flow along inclined plane surfaces, Ind. Eng. Chem. Fundam., 3(4) (1964) 333–339.CrossRefGoogle Scholar
  3. [3]
    T. Cebeci, and P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer-Verlag, New York, USA, (1984).MATHGoogle Scholar
  4. [4]
    H. Schlichting, Boundary layer theory, Springer-Verlag, New York, USA, (2000).MATHGoogle Scholar
  5. [5]
    M. M. Rahman, A. Faghri, W. L. Hankey and T. D. Swanson, Computation of the free surface flow of a thin liquid film at zero and normal gravity, Numer.Heat Transf., Part A Appl., 17(1) (1990) 53–71.CrossRefGoogle Scholar
  6. [6]
    N. Therien, B. Coupal and J. L. Corneille, Verification experimentale de l’epaisseur du film pour des liquides non-Newtonien s’ecoulant pargravite sur un plan incline, Can. J. Chem. Eng., 48 (1970) 17–20.CrossRefGoogle Scholar
  7. [7]
    N. D. Sylvester, J. S. Tyler and A. H. P. Skelland, Non-Newtonian thin films: theory and experiment, Can. J. Chem. Eng., 51 (1973) 418–429.CrossRefGoogle Scholar
  8. [8]
    O. D. Makinde, Heat and mass transfer in a pipe with moving surface-effect of viscosity variation and energy dissipation, Quaestiones Mathematicae, 24 (2001) 93–104.MATHMathSciNetGoogle Scholar
  9. [9]
    O. D. Makinde, Hermite-Padé approximation approach to steady flow of a liquid film with adiabatic free surface along an inclined heat plate, Physica A, 381 (2007) 1–7.CrossRefGoogle Scholar
  10. [10]
    O. D. Makinde, Laminar falling liquid film with variable viscosity along an inclined heated plate, Applied Mathematics and Computation, 175 (2006) 80–88.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    O. D. Makinde, Thermal criticality for a reactive gravity driven thin film flow of a third grade fluid with adiabatic free surface down an inclined plane, Applied Mathematics and Mechanics, 30(3) (2009) 373–380.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    U. Narusawa, The second law analysis of mixed convection in rectangular ducts, Heat and Mass Transfer, 37 (2001) 197–203.CrossRefGoogle Scholar
  13. [13]
    G. Ibanez, S. Cuevas and M. Lopez de Haro, Minimization of entropy generation by asymmetric convective cooling, Int. J. Heat Mass Transfer, 46 (2003) 1321–1328.MATHCrossRefGoogle Scholar
  14. [14]
    A. Bejan, Entropy generation through heat and fluid Flow, John Wiley & Sons. Inc.: Canada, Chapter 5, (1994) 98.Google Scholar
  15. [15]
    A. Bejan, Entropy generation minimization, CRC Press, Boca Raton, Florida, (1996).MATHGoogle Scholar
  16. [16]
    O. D. Makinde, Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate, Physica Scripta, 74 (2006) 642–645.MATHCrossRefGoogle Scholar
  17. [17]
    S. Saouli and S. Aiboud-Saouli, Second law analysis of laminar falling liquid film along an inclined heated plate, Inter. Comm. Heat Mass Transfer, 31 (2004) 879–886.CrossRefGoogle Scholar
  18. [18]
    R. S. Reddy Gorla, L. W. Byrd and D. M. Pratt, Second law analysis for microscale flow and heat transfer, Applied Thermal Engineering, 27 (2007) 1414–1423.CrossRefGoogle Scholar
  19. [19]
    B. N. Taufiq, H. H. Masjuki, T. M. I. Mahlia, R. Saidur, M. S. Faizul and E. Niza Mohamad, Second law analysis for optimal thermal design of radial fin geometry by convection, Applied Thermal Engineering, 27 (2007) 1363–1370.CrossRefGoogle Scholar
  20. [20]
    S. H. Tasnim and S. Mahmud, Entropy generation in a vertical concentric channel with temperature dependent viscosity, Int. Comm. Heat Mass Transfer, 29(7) (2002) 907–918.CrossRefGoogle Scholar
  21. [21]
    A. Z. Sahin, Effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux, Heat Mass Transfer, 35 (1999) 499–506.CrossRefGoogle Scholar
  22. [22]
    O. D. Makinde, Entropy-generation analysis for variableviscosity channel flow with non-uniform wall temperature, Applied Energy, 85 (2008) 384–393.CrossRefGoogle Scholar
  23. [23]
    O. D. Makinde, Irreversibility analysis of variable viscosity channel flow with convective cooling at the walls, Canadian Journal of Physics, 86(2) (2008) 383–389.CrossRefGoogle Scholar
  24. [24]
    E. M. A. Elbashbeshy and M. A. A. Bazid, The effect of temperature dependent viscosity on heat transfer over a continuous moving surface, Journal of Applied Phys., 33 (2000) 2716–2721.Google Scholar
  25. [25]
    W. Squire, A mathematical analysis of self-ignition, Applications of Undergraduate Mathematics in Engineering, Ed. Noble, B. MacMillan, New York, USA, (1967).Google Scholar
  26. [26]

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Faculty of EngineeringCape Peninsula University of TechnologyBellvilleSouth Africa

Personalised recommendations