Skip to main content
Log in

Molecular dynamic simulation of the melting and solidification processes of argon

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Molecular Dynamic (MD) simulations have been conducted to look at the melting and solidification of the Lennard-Jones argon (100) interface with small amounts (up to 6.0K) of undercooling and superheating. By combining the fully equilibrated bulk phases of liquid and solid in one simulation box and counting the number of solid-like particles, the interface velocities, i.e. the growth rate or melting rate, were obtained as a function of temperature. The melting temperature, where no growth or melting of crystal particle is expected, is T m * =0.668 which is close to that of the Gibbs free energy calculation. A linear dependence of growth or melting rate on temperature was found except for high superheating, ΔT > 6K. The high superheating is believed as the main source of slope discontinuity in the rate, not the misuse of initial regime as discussed in the earlier works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Laird and A. D. J. Haymet, The crystal/liquid interface: Structure and properties from computer simulation, Chem. Rev., 92 (1992) 1819–1837.

    Article  Google Scholar 

  2. D. R. Uhlmann, J. F. Hays and D. Turnbull, The effect of high pressure on B2O3: Crystallization, desification, and the crystallization anomaly, Phys. Chem. Glasses, 8 (1967) 1–10.

    Google Scholar 

  3. J. Y. Tsao, M. J. Aziz, M. O. Thompson and P. S. Peercy, Asymmetric melting and freezing kinetics in silicon, Phys. Rev. Lett., 56 (1986) 2712–2715.

    Article  Google Scholar 

  4. M. D. Kluge and J. R. Ray, Velocity versus temperature relation for solidification and melting of silicon: A molecular-dynamics study, Phys. Rev. B., 39 (1989) 1738–1746.

    Article  Google Scholar 

  5. M. Iwamatsu and K. Horii, Interface kinetics of freezing and melting of Si and Na, Phys. Lett. A., 214 (1996) 71–75.

    Article  Google Scholar 

  6. C. J. Tymczak and J. R. Ray, Asymmetric crystallization and melting kinetics in sodium: A molecular-dynamics study, Phys. Rev. Lett., 64 (1990) 1278–1281.

    Article  Google Scholar 

  7. H. L. Tepper and W. J. Briels, Simulation of crystallization and melting of the FCC (100) interface: the crucial role of lattice imperfections, J. Crystal Growth, 230 (2001) 270–276.

    Article  Google Scholar 

  8. H. L. Tepper and W. J. Briels, Crystallization and melting in the Lennard-Jones system: Equilibration, relaxation, and long-time dynamics of the moving interface, J. Chem. Phys., 115 (2001) 9434–9443.

    Article  Google Scholar 

  9. V. G. Baidakov, G. G. Chernykh and S. P. Protsenko, Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard-Jones systems, Chem. Phys. Lett., 321 (2000) 315–320.

    Article  Google Scholar 

  10. M. P. Allen and D. J. Tildesley, Computer simulation of liquid, Oxford, 1987.

  11. A. J. H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon, Int. J. Heat Mass Transfer, 47 (2004) 1783–1798.

    Article  MATH  Google Scholar 

  12. G. J. Martyna, D. J. Tobias and M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys., 101 (1994) 4177–4189.

    Article  Google Scholar 

  13. S. E. Feller, Y. Zhang, R. W. Pastor and B. R. Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Chem. Phys., 103 (1995) 4613–4621.

    Article  Google Scholar 

  14. J. Q. Broughton and G. H. Gilmer, Molecular dynamics investigation of the crystal-fluid interface. I. Bulk properties, J. Chem. Phys., 79 (1983) 5095–5104.

    Article  Google Scholar 

  15. J. K. Johnson, J. A. Zollweg and K. E. Gubbins, The Lennard-Jones equation of state revisited, Mol. Phys., 78 (1993) 591–618.

    Article  Google Scholar 

  16. M. A. van der Hoef, Free energy of the Lennard-Jones solid, J. Chem. Phys., 113 (2000) 8142–8148.

    Article  Google Scholar 

  17. O. G. Peterson, D. N. Batchelder and R. O. Simmons, Measurements of X-ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals, Phys. Rev., 150 (1966) 703–711.

    Article  Google Scholar 

  18. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford, 1962.

  19. Ph Buffat and J. P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A., 13 (1976) 2287–2298.

    Article  Google Scholar 

  20. J. Daeges, H. Gleiter and J. H. Perepezko, Superheating of metal crystals, Phys. Lett. A., 119 (1986) 79–82.

    Article  Google Scholar 

  21. J. G. Kirkwood, Statistical mechanics of fluid mixtures, J. Chem. Phys., 3 (1935) 300–313.

    Article  Google Scholar 

  22. R. W. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys., 22 (1954) 1420–1426.

    Article  Google Scholar 

  23. R. Agrawal and D. A. Kofke, Thermodynamic and structural properties of model system at solid-fluid coexistence, Mol. Phys., 85 (1995) 43–59.

    Article  Google Scholar 

  24. http://webbook.nist.gov

  25. S. N. Luo, A. Strachan and D. C. Swift, Nonequilibrium melting and crystallization of a model Lennard-Jones system, J. Chem. Phys., 120 (2004) 11640–11649.

    Article  Google Scholar 

  26. S. Nosé and F. Yonezawa, Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system, J. Chem. Phys., 84 (1986) 1803–1814.

    Article  Google Scholar 

  27. H. E. A. Huitema, M. J. Vlot and J. P. van der Eerden, Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure, J. Chem. Phys., 111 (1999) 4714–4723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Dong Chung.

Additional information

This paper was recommended for publication in revised form by Associate Editor Dongsik Kim

Jae Dong Chung received his B.S. degree in Mechanical Engineering from Seoul National University, Korea, in 1990. He then received his M.S. and Ph.D. degrees from Seoul National University in 1992 and 1996, respectively. Dr. Chung is currently a Professor at the Mechanical Engineering at Sejong University in Seoul, Korea. He serves as a Director of General Affairs of the SAREK and the thermal division of KSME. Dr. Chung’s research interests include nano-scale heat transfer, phase change, material processing and HVAC&R.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, J.D. Molecular dynamic simulation of the melting and solidification processes of argon. J Mech Sci Technol 23, 1563–1570 (2009). https://doi.org/10.1007/s12206-009-0418-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-009-0418-0

Keywords

Navigation