Skip to main content
Log in

Robust proportional-integral Kalman filter design using a convex optimization method

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a design approach to the robust proportional-integral Kalman filter for stochastic linear systems under convex bounded parametric uncertainty, in which the filter has a proportional loop and an integral loop of the estimation error, providing a guaranteed minimum bound on the estimation error variance for all admissible uncertainties. The integral action is believed to increase steady-state estimation accuracy, improving robustness against uncertainties such as disturbances and modeling errors. In this study, the minimization problem of the upper bound of estimation error variance is converted into a convex optimization problem subject to linear matrix inequalities, and the proportional and the integral Kalman gains are optimally chosen by solving the problem. The estimation performance of the proposed filter is demonstrated through numerical examples and shows robustness against uncertainties, addressing the guaranteed performance in the mean square error sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Luenberger, Observers for multi-variable systems, IEEE Trans. on Automatic Control, 11(2) (1966) 190–197.

    Article  Google Scholar 

  2. R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. of the ASME Series D, J. of Basic Engineering, 83(3) (1969) 95–108.

    MathSciNet  Google Scholar 

  3. B. Wojciechowski, Analysis and Synthesis of Proportional-Integral Observers for Single-Input-Single-Output Time-Invariant Continuous Systems, Ph.D. Thesis, Gliwice, Poland (1978).

    Google Scholar 

  4. T. Kaczorek, Proportional-integral observers for linear multivariable time-varying systems, Regelungstechnik, 27(11) (1979) 359–362.

    MATH  Google Scholar 

  5. B. Shafai and R. L. Carroll, Design of proportional integral observer for linear time-varying multivariable systems, Proc. of the IEEE Conf. on Decision and Control, Ft. Lauderdale, Florida, USA. (1985) 597–599.

  6. D. Söffker, T.-J. Yu and P. C. Müller, State estimation of dynamical systems with nonlinearities by using proportional-integral observer, Int. J. Systems Sci., 26(9) (1995) 1571–1582.

    Article  MATH  Google Scholar 

  7. B. Shafai, S. Beale, H. H. Niemann and J. L. Stoustrup, LTR design of discrete-time proportional-integral observers, IEEE Trans. on Automatic Control, 41(7) (1996) 1056–1062.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. X. Yao, Y. M. Zhang and R. Kovacevic, Loop transfer recovery design with proportional integral observer based on H optimal observation, Proc. of the American Control Conference, Albuquerque, New Mexico, USA. (1997) 786–790.

  9. B. Shafai, C. T. Pi and S. Nork, Simultaneous disturbance attenuation and fault detection using proportional integral observers, Proc. of the American Control Conference, Anchorage, Alaska, USA. (2002) 1647–1649.

  10. K. K. Busawon and P. Kabore, Disturbance attenuation using proportional integral observers, Int. J. of Control, 74(6) (2001) 618–627.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Marx, D. Koenig and D. Georges, Robust fault diagnosis for linear descriptor systems using proportional integral observers, Proc. of the IEEE Conf. on Decision and Control, Maui, Hawaii, USA. (2003) 457–462.

  12. G. R. Duan, G. P. Liu and S. Thomson, Eigenstructure assignment design for proportional-integral observers: continuous-time case, IEE Proc.—Control Theory Appl., 148(3) (2001) 263–267.

    Article  Google Scholar 

  13. S. P. Linder and B. Shafai, Robust PFI Kalman filters, Proc. of the American Control Conference, Philadelphia, Pennsylvania, USA. (1998) 3163–3164.

  14. Y. Ö. Baş, B. Shafai and S. P. Linder, Design of optimal gains for the proportional integral Kalman filter with application to single particle tracking, Proc. of the IEEE Conf. on Decision and Control, Phoenix, Arizona USA. (1999) 4567–4571.

  15. C. E. de Souza and A. Trofino, A linear matrix inequality approach to the design of robust H2 filters, in L. El Ghaoui and S.-L. Niculescu, Advances in Linear Matrix Inequality Methods in Control, SIAM, Philadelphia, Pennsylvania, USA. (2000) 175–185.

  16. J. C. Geromel, Optimal linear filtering under parameter uncertainty, IEEE Trans. on Signal Processing, 47(1) (1999) 168–175.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, Pennsylvania, USA. (1994).

    MATH  Google Scholar 

  18. P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbox User’s Guide, The Mathworks, Inc, Natick, Massachusetts, USA. (1995).

    Google Scholar 

  19. J. Oishi and V. Balakrishnan, Linear controller design for the NEC laser bonder via linear matrix inequality optimization, in L. El Ghaoui and S.-L. Niculescu, Advances in Linear Matrix Inequality Methods in Control, SIAM, Philadelphia, Pennsylvania, USA. (2000) 295–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunsoo Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Han, S. & Huh, K. Robust proportional-integral Kalman filter design using a convex optimization method. J Mech Sci Technol 22, 879–886 (2008). https://doi.org/10.1007/s12206-007-1118-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-007-1118-2

Keywords

Navigation