Contribution of Different Quantities of Leaf Litter to Nitrous Oxide Emission from a Temperate Deciduous Forest

Abstract

Leaf litter cover on forest floors regulates the nitrogen dynamics in soil and affects soil-atmospheric exchange of nitrous oxide (N2O). “The effect of ‘different mass’ of leaf litter on N2O” emission is, however, unclear. In this study, we measured N2O emission from variable leaf litter applications in (IN) and on (ON) soil such as 0 (control), 370, 730, and 1,009 g dry weight m−2. Closed chambers were installed at an experimental site in Korea to measure N2O emission from the soil. Average N2O emission was decreased by 1.15 µg N2O-N m−2 h−1 with leaf litter removal in ON-0 and increased by 2.38 µg N2O-N m−2 h−1 with soil tilling in IN-0 treatment. Average N2O emission was increased by 3.75 µg N2O-N m−2 h−1 and 3.06 µg N2O-N m−2 h−1 with increasing leaf litter from 370 to 730 g m−2 in both ON and IN treatments, respectively. N2O emission was decreased by 4.04 µg N2O-N m−2 h−1 and 1.51 µg N2O-N m−2 h−1 in ON-1009 and IN-1009 treatments as compare to ON-730 and IN-730 treatments, respectively due to high soil water content and carbon to nitrogen ratio, respectively. Average annual N2O emission in different types of temperate forests around the World ranged between 13.5 to 21,10.0 g N2O-N ha−1 y−1, while 1,007.4 g N2O-N ha−1 y−1 was observed in this study. Soil temperature exhibited a weak correlation with N2O emission in all treatments of both IN and ON treatments. Average N2O emission in IN-0, IN-370, IN-730, and IN-1009 was 45.0, 53.0, 27.0, and 86.0% higher than ON-0, ON-370, ON-730, and ON-1009 treatments, respectively. Results of N2O emission from this study can be used to estimate N2O emission from forest soils in Korea and extended worldwide to countries with similar soil and climatic conditions.

This is a preview of subscription content, access via your institution.

References

  1. Aini FK, Hergoualc’h K, Smith JU, Verchot L (2015) Nitrous oxide emissions along a gradient of tropical forest disturbance on mineral soils in Sumatra. Agriculture, Ecosystems & Environment 214:107–117, DOI: https://doi.org/10.1016/j.agee.2015.08.022

    Article  Google Scholar 

  2. Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S (2007) Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology and Biochemistry 39(2):622–631, DOI: https://doi.org/10.1016/j.soilbio.2006.09.013

    Article  Google Scholar 

  3. Ambus P, Zechmeister-Boltenstern S, Butterbach-Bahl K (2006) Sources of nitrous oxide emitted from European forest soils. Biogeosciences 3: 135–145, DOI: https://doi.org/10.5194/bg-3-135-2006

    Article  Google Scholar 

  4. An JY, Park BB, Chun JH, Osawa A (2017) Litterfall production and fine root dynamics in cool-temperate forests. PLOS ONE 12(6): e0180126, DOI: https://doi.org/10.1371/journal.pone.0180126

    Article  Google Scholar 

  5. Ashton DH (1975) Studies of litter in eucalyptus regnans forests. Australian Journal of Botany 23(3):413–433, DOI: https://doi.org/10.1071/BT9750413

    Article  Google Scholar 

  6. Avrahami S, Bohannan BJ (2007) Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Applied and Environmental Microbiolog 73(4):1166–1173, DOI: https://doi.org/10.1128/AEM.01803-06

    Article  Google Scholar 

  7. Baker J, Doyle G, McCarthy G, Mosier A, Parkin T, Reicosky D, Smith J, Venterea R (2003) GRACEnet chamber-based trace gas flux measurement protocol. Trace Gas Protocol Development Committee 14:1–18

    Google Scholar 

  8. Barrena I, Menéndez S, Duñabeitia M, Merino P, Stange CF, Spott O, González-Murua C, Estavillo JM (2013) Greenhouse gas fluxes (CO2, N2O and CH4) from forest soils in the Basque Country: Comparison of different tree species and growth stages. Forest Ecology and Management 310:600–611, DOI: https://doi.org/10.1016/j.foreco.2013.08.065

    Article  Google Scholar 

  9. Bayer C, Gomes J, Zanatta JA, Vieira FCB, de Cássia Piccolo M, Dieckow J, Six J (2015) Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. Soil and Tillage Research 146:213–222, DOI: https://doi.org/10.1016/j.still.2014.10.011

    Article  Google Scholar 

  10. Blagoveshchenskii YN, Bogatyrev L, Solomatova E, Samsonova V (2006) Spatial variation of the litter thickness in the forests of Karelia. Eurasian Soil Science 39(9):925–930, DOI: https://doi.org/10.1134/S1064229306090018

    Article  Google Scholar 

  11. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecological Monographs 75(2):139–157, DOI: https://doi.org/10.1890/04-0988

    Article  Google Scholar 

  12. Bot A, Benites J (2005) The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food & Agriculture Organization, Rome, Italy

    Google Scholar 

  13. Bowden RD, Melillo JM, Steudler PA, Aber JD (1991) Effects of nitrogen additions on annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. Journal of Geophysical Research: Atmospheres 96(D5):9321–9328, DOI: https://doi.org/10.1029/91JD00151

    Article  Google Scholar 

  14. Bray JR, Gorham E (1964) Litter production in forests of the world. Advances in Ecological Research 2:101–157, DOI: https://doi.org/10.1016/S0065-2504(08)60331-1

    Article  Google Scholar 

  15. Butterbach-Bahl K, Rothe A, Papen H (2002) Effect of tree distance on N2O and CH4-fluxes from soils in temperate forest ecosystems. Plant and Soil 240(1):91–103, DOI: https://doi.org/10.1023/A:1015828701885

    Article  Google Scholar 

  16. Castro MS, Steudler PA, Melillo JM, Aber JD, Millham S (1992) Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the northeastern United States. Biogeochemistry 18(3):119–135, DOI: https://doi.org/10.1007/BF00003273

    Article  Google Scholar 

  17. Cesarz S, Fahrenholz N, Migge-Kleian S, Platner C, Schaefer M (2007) Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology 43:S61–S67, DOI: https://doi.org/10.1016/j.ejsobi.2007.08.003

    Article  Google Scholar 

  18. Chapuis-Lardy L, Wrage N, Metay A, CHOTTE JL, Bernoux M (2007) Soils, a sink for N2O? A review. Global Change Biology 13(1):1–17, DOI: https://doi.org/10.1111/j.1365-2486.2006.01280.x

    Article  Google Scholar 

  19. Chen D, Fu X-Q, Wang C, Liu X-L, Li H, Shen J-L, Wang Y, Li Y, Wu J-S (2015) Nitrous oxide emissions from a masson pine forest soil in subtropical central China. Pedosphere 25(2):263–274, DOI: https://doi.org/10.1016/S1002-0160(15)60011-X

    Article  Google Scholar 

  20. Chen H, Gurmesa GA, Liu L, Zhang T, Fu S, Liu Z, Dong S, Ma C, Mo J (2014) Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China. PLOS ONE 9(6):e99018, DOI: https://doi.org/10.1371/journal.pone.0099018

    Article  Google Scholar 

  21. Chen GX, Huang B, Xu H, Zhang Y, Huang G, Yu K, Hou A, Du R, Han S, VanCleemput O (2000) Nitrous oxide emissions from terrestrial ecosystems in China. Chemosphere-Global Change Science 2(3–4):373–378, DOI: https://doi.org/10.1016/S1465-9972(00)00036-2

    Article  Google Scholar 

  22. Cheng S, Wang L, Fang H, Yu G, Yang X, Li X, Si G, Geng J, He S, Yu G (2016) Nonlinear responses of soil nitrous oxide emission to multilevel nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China. Catena 147:556–563, DOI: https://doi.org/10.1016/j.catena.2016.08.010

    Article  Google Scholar 

  23. Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In J. Rogers, and W.B. Whitman, editors. Microbial production and consumption of greenhouse gases. American Society for Microbiology, Washington DC, USA, 219–235

    Google Scholar 

  24. Dong Y, Scharffe D, Lobert J, Crutzen P, Sanhueza E (1998) Fluxes of CO2, CH4 and N2O from a temperate forest soil: The effects of leaves and humus layers. Tellus B 50(3):243–252, DOI: https://doi.org/10.3402/tellusb.v50i3.16099

    Article  Google Scholar 

  25. Dou X, Zhou W, Zhang Q, Cheng X (2016) Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China. Atmospheric Environment 126:98–106, DOI: https://doi.org/10.1016/j.atmosenv.2015.11.054

    Article  Google Scholar 

  26. Erickson HE, Perakis SS (2014) Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon. Soil Biology and Biochemistry 76:268–277, DOI: https://doi.org/10.1016/j.soilbio.2014.05.024

    Article  Google Scholar 

  27. Ernfors M, von Arnold K, Stendahl J, Olsson M, Klemedtsson L (2007) Nitrous oxide emissions from drained organic forest soils — An upscaling based on C: N ratios. Biogeochemistry 84(2):219–231, DOI: https://doi.org/10.1007/s10533-007-9123-1

    Article  Google Scholar 

  28. Fest BJ, Livesley SJ, von Fischer JC, Arndt SK (2015) Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest. Agricultural and Forest Meteorology 201:17–25, DOI: https://doi.org/10.1016/j.agrformet.2014.11.006

    Article  Google Scholar 

  29. Gao J, Zhou W, Liu Y, Zhu J, Sha L, Song Q, Ji H, Lin Y, Fei X, Bai X (2018) Effects of litter inputs on N2O emissions from a tropical rainforest in southwest China. Ecosystems 21(5):1013–1026, DOI: https://doi.org/10.1007/s10021-017-0199-8

    Article  Google Scholar 

  30. Gödde M, Conrad R (1999) Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biology and Fertility of Soils 30(1–2):33–40, DOI: https://doi.org/10.1007/s003740050584

    Google Scholar 

  31. Goodroad L, Keeney D (1984) Nitrous oxide emission from forest, marsh, and prairie ecosystems 1. Journal of Environmental Quality 13(3):448–452, DOI: https://doi.org/10.2134/jeq1984.00472425001300030024x

    Article  Google Scholar 

  32. Granli T, Boeckman OC (1994) Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences 12:7–128

    Google Scholar 

  33. Grave RA, da Silveira Nicoloso R, Cassol PC, da Silva MLB, Mezzari MP, Aita C, Wuaden CR (2018) Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil and Tillage Research 175:1–12, DOI: https://doi.org/10.1016/j.still.2017.08.011

    Article  Google Scholar 

  34. Gütlein A, Zistl-Schlingmann M, Becker JN, Cornejo NS, Detsch F, Dannenmann M, Appelhans T, Hertel D, Kuzyakov Y, Kiese R (2017) Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt. Kilimanjaro, Tanzania. Plant and Soil 411(1–2):243–259, DOI: https://doi.org/10.1007/s11104-016-3029-4

    Article  Google Scholar 

  35. Hach (2007) D.R 2800 Spectrophotometer. The handbook about procedures manual. Hach, Loveland, CO, USA

    Google Scholar 

  36. Hatano R, Nakahara O, Kawahara S, Kitamura S, Koide T (2007) Greenhouse gas budget in a larch forest with low atmospheric N deposition in Hokkaido, Northern Japan. Eurasian Journal of Forest Research 10(1):71–77

    Google Scholar 

  37. Hernández J, del Pino A, Hitta M, Lorenzo M (2016) Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutrient Cycling in Agroecosystems 105(2):141–155, DOI: https://doi.org/10.1007/s10705-016-9781-2

    Article  Google Scholar 

  38. Holtan-Hartwig L, Dörsch P, Bakken L (2002) Low temperature control of soil denitrifying communities: Kinetics of N2O production and reduction. Soil Biology and Biochemistry 34(11):1797–1806, DOI: https://doi.org/10.1016/S0038-0717(02)00169-4

    Article  Google Scholar 

  39. Horváth L, Führer E, Lajtha K (2006) Nitric oxide and nitrous oxide emission from Hungarian forest soils; linked with atmospheric N-deposition. Atmospheric Environment 40(40):7786–7795, DOI: https://doi.org/10.1016/j.atmosenv.2006.07.029

    Article  Google Scholar 

  40. Inagaki Y, Miura S, Kohzu A (2004) Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikoku district, southern Japan. Forest Ecology and Management 202(1–3):107–117, DOI: https://doi.org/10.1016/j.foreco.2004.07.029

    Article  Google Scholar 

  41. IPCC (2001) Climate change: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 881

    Google Scholar 

  42. IPCC (2013) Climate change: The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, USA, 1535

    Google Scholar 

  43. Jungkunst H, Fiedler S, Stahr K (2004) N2O emissions of a mature Norway spruce (Picea abies) stand in the Black Forest (southwest Germany) as differentiated by the soil pattern. Journal of Geophysical Research: Atmospheres 109(D7), DOI: https://doi.org/10.1029/2003JD004344

  44. Kim D-S, Kim S (2013) N2O and CH4 emission from upland forest soils using chamber methods. Journal of Korean Society for Atmospheric Environment 29(6):789–800, DOI: https://doi.org/10.5572/KOSAE.2013.29.6.789

    Article  Google Scholar 

  45. Klemedtsson L, Von Arnold K, Weslien P, Gundersen P (2005) Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology 11(7):1142–1147, DOI: https://doi.org/10.1111/j.1365-2486.2005.00973.x

    Article  Google Scholar 

  46. KMA (2016) Annual climatological report. Korea Meteorological Administration (KMA), Retrieved June 30, 2017, http://www.kma.go.kr/download_01/Annual_Report2016.pdf

  47. Kooijman A, Kooijman-Schouten M, Martinez-Hernandez G (2008) Alternative strategies to sustain N-fertility in acid and calcaric beech forests: Low microbial N-demand versus high biological activity. Basic and Applied Ecology 9(4):410–421, DOI: https://doi.org/10.1016/j.baae.2007.05.004

    Article  Google Scholar 

  48. Lamers M, Ingwersen J, Streck T (2007) Nitrous oxide emissions from mineral and organic soils of a Norway spruce stand in South-West Germany. Atmospheric Environment 41(8):1681–1688, DOI: https://doi.org/10.1016/j.atmosenv.2006.10.050

    Article  Google Scholar 

  49. Leitner S, Sae-Tun O, Kranzinger L, Zechmeister-Boltenstern S, Zimmermann M (2016) Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest. Plant and Soil 403(1–2):455–469, DOI: https://doi.org/10.1007/s11104-015-2771-3

    Article  Google Scholar 

  50. Luo G, Kiese R, Wolf B, Butterbach-Bahl K (2013) Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10(5):3205, DOI: https://doi.org/10.5194/bg-10-3205-2013

    Article  Google Scholar 

  51. Matson PA, Gower ST, Volkmann C, Billow C, Grier CC (1992) Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglasfir forest: Effects of fertilization, irrigation and carbon addition. Biogeochemistry 18(2):101–117, DOI: https://doi.org/10.1007/BF00002705

    Article  Google Scholar 

  52. Meier IC, Leuschner C, Marini E, Fender A-C (2016) Species-specific effects of temperate trees on greenhouse gas exchange of forest soil are diminished by drought. Soil Biology and Biochemistry 95:122–134, DOI: https://doi.org/10.1016/j.soilbio.2015.12.005

    Article  Google Scholar 

  53. Miyamoto T, Hiura T (2008) Decomposition and nitrogen release from the foliage litter of fir (Abies sachalinensis) and oak (Quercus crispula) under different forest canopies in Hokkaido, Japan. Ecological Research 23(4):673–680, DOI: https://doi.org/10.1007/s11284-007-0426-4

    Article  Google Scholar 

  54. Morishita T, Aizawa S, Yoshinaga S, Kaneko S (2011) Seasonal change in N2O flux from forest soils in a forest catchment in Japan. Journal of Forest Research 16(5):386–393, DOI: https://doi.org/10.1007/s10310-011-0285-2

    Article  Google Scholar 

  55. Morishita T, Sakata T, Takahashi M, Ishizuka S, Mizoguchi T, Inagaki Y, Terazawa K, Sawata S, Igarashi M, Yasuda H (2007) Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types. Soil Science and Plant Nutrition 53(5):678–691, DOI: https://doi.org/10.1111/j.1747-0765.2007.00181.x

    Article  Google Scholar 

  56. Neirynck J, Mirtcheva S, Sioen G, Lust N (2000) Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecology and Management 133(3):275–286, DOI: https://doi.org/10.1016/S0378-1127(99)00240-6

    Article  Google Scholar 

  57. Papen H, Butterbach-Bahl K (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions. Journal of Geophysical Research: Atmospheres 104(D15): 18487–18503, DOI: https://doi.org/10.1029/1999JD900293

    Article  Google Scholar 

  58. Phillips RL, Whalen SC, Schlesinger WH (2001) Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem. Global Biogeochemical Cycles 15(3):741–752, DOI: https://doi.org/10.1029/2000GB001372

    Article  Google Scholar 

  59. Pihlatie M, Pumpanen J, Rinne J, Ilvesniemi H, Simojoki A, Hari P, Vesala T (2007) Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus B: Chemical and Physical Meteorology 59(3):458–469, DOI: https://doi.org/10.1111/j.1600-0889.2007.00278.x

    Article  Google Scholar 

  60. Pilegaard K, Skiba U, Ambus P, Beier C, Pihlatie M, Vesala T (2006) Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 3(4):651–661, DOI: https://doi.org/10.5194/bg-3-651-2006

    Article  Google Scholar 

  61. Poblador S, Lupon A, Sabaté S, Sabater F (2017) Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil. Biogeosciences 14(18):4195–4208, DOI: https://doi.org/10.5194/bg-14-4195-2017

    Article  Google Scholar 

  62. Rolston DE (1986) Gas flux. In: Klute A (ed) Methods of soil analysis: Part 1 — Physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, USA

    Google Scholar 

  63. Schmidt J, Seiler W, Conrad R (1988) Emission of nitrous oxide from temperate forest soils into the atmosphere. Journal of Atmospheric Chemistry 6(1–2):95–115, DOI: https://doi.org/10.1007/BF00048334

    Article  Google Scholar 

  64. Seo J-Y, Kang H-J (2012) N2O emissions with different land-use patterns in a basin. Journal of Korean Society of Environmental Engineers 34(2):86–90, DOI: https://doi.org/10.4491/KSEE.2012.34.2.086

    Article  Google Scholar 

  65. Sheehy J, Six J, Alakukku L, Regina K (2013) Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agriculture, Ecosystems & Environment 164:190–199, DOI: https://doi.org/10.1016/j.agee.2012.10.007

    Article  Google Scholar 

  66. Smith K, Ball T, Conen F, Dobbie K, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. European Journal of Soil Science 54(4):779–791, DOI: https://doi.org/10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  67. Song L, Tian P, Zhang J, Jin G (2017) Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Science of the Total Environment 609:1303–1311, DOI: https://doi.org/10.1016/j.scitotenv.2017.08.017

    Article  Google Scholar 

  68. Szukics U, Abell GC, Hödl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology 72(3):395–406, DOI: https://doi.org/10.1111/j.1574-6941.2010.00853.x

    Article  Google Scholar 

  69. Tang X, Liu S, Zhou G, Zhang D, Zhou C (2006) Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology 12(3):546–560, DOI: https://doi.org/10.1111/j.1365-2486.2006.01109.x

    Article  Google Scholar 

  70. Tyrrell ML, Ross J, Kelty M (2012) Carbon dynamics in the temperate forest. Managing Forest Carbon in a Changing Climate 77–107, DOI: https://doi.org/10.1007/978-94-007-2232-3_5

  71. Ullah S, Moore TR (2011) Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. Journal of Geophysical Research: Biogeosciences 116(G3), DOI: https://doi.org/10.1029/2010jg001525

  72. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD, Steudler PA (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biology 9(3):346–357, DOI: https://doi.org/10.1046/j.1365-2486.2003.00591.x

    Article  Google Scholar 

  73. Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecological Applications 16(6):2143–2152, DOI: https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2

    Article  Google Scholar 

  74. Wang J-J, Pisani O, Lin LH, Lun OO, Bowden RD, Lajtha K, Simpson AJ, Simpson MJ (2017) Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest. Science of the Total Environment 607:865–875, DOI: https://doi.org/10.1016/j.scitotenv.2017.07.063

    Article  Google Scholar 

  75. Wang Y, Wang H, Ma Z, Dai X, Wen X, Liu Y, Wang Z-L (2013) The litter layer acts as a moisture-induced bidirectional buffer for atmospheric methane uptake by soil of a subtropical pine plantation. Soil Biology and Biochemistry 66:45–50, DOI: https://doi.org/10.1016/j.soilbio.2013.06.018

    Article  Google Scholar 

  76. Wang Y, Wang H, Wang Z-L, Ma Z, Dai X, Wen X, Liu Y (2014) Effect of litter layer on soil-atmosphere N2O flux of a subtropical pine plantation in China. Atmospheric Environment 82:106–112, DOI: https://doi.org/10.1016/j.atmosenv.2013.10.028

    Article  Google Scholar 

  77. Wen Y, Corre MD, Schrell W, Veldkamp E (2017) Gross N2O emission and gross N2O uptake in soils under temperate spruce and beech forests. Soil Biology and Biochemistry 112:228–236, DOI: https://doi.org/10.1016/j.soilbio.2017.05.011

    Article  Google Scholar 

  78. Wieder WR, Cleveland CC, Townsend AR (2011) Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology 17(10):3195–3207, DOI: https://doi.org/10.1111/j.1365-2486.2011.02426.x

    Article  Google Scholar 

  79. Xiong Y, Xia H, Li Za, Cai Xa, Fu S (2008) Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant and Soil 304(1–2):179–188, DOI: https://doi.org/10.1007/s11104-007-9536-6

    Article  Google Scholar 

  80. Xu K, Wang C, Yang X (2017) Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China. PLOS ONE 12(12): e0189831, DOI: https://doi.org/10.1371/journal.pone.0189831

    Article  Google Scholar 

  81. Yamulki S, Morison JI (2017) Annual greenhouse gas fluxes from a temperate deciduous oak forest floor. Forestry: An International Journal of Forest Research 90(4):541–552, DOI: https://doi.org/10.1093/forestry/cpx008

    Article  Google Scholar 

  82. Yuping Y, Liqing S, Min C, Zheng Z, Jianwei T, Yinghong W, Zhang Y, Rui W, Guangren L, Yuesi W (2008) Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China. Journal of Environmental Sciences 20(2):207–215, DOI: https://doi.org/10.1016/S1001-0742(08)60033-9

    Article  Google Scholar 

  83. Zhang J, Peng C, Zhu Q, Xue W, Shen Y, Yang Y, Shi G, Shi S, Wang M (2016) Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China. Atmospheric Environment 142:340–350, DOI: https://doi.org/10.1016/j.atmosenv.2016.08.011

    Article  Google Scholar 

  84. Zhang K, Wu H, Li M, Yan Z, Li Y, Wang J, Zhang X, Yan L, Kang X (2020) Magnitude and edaphic controls of nitrous oxide fluxes in natural forests at different scales. Forests 11: 251, DOI: https://doi.org/10.3390/f11030251

    Article  Google Scholar 

  85. Zhang G, Zhang P, Peng S, Chen Y, Cao Y (2017) The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Scientific Reports 7(1):11754, DOI: https://doi.org/10.1038/s41598-017-12199-5

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (NRF-2018R1A2A1A05023555).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jae-Woo Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khokhar, N.H., Park, JW. Contribution of Different Quantities of Leaf Litter to Nitrous Oxide Emission from a Temperate Deciduous Forest. KSCE J Civ Eng (2021). https://doi.org/10.1007/s12205-021-1441-7

Download citation

Keywords

  • N2O emission
  • Temperate forest
  • Leaf litter
  • Soil temperature
  • Soil water content