Skip to main content
Log in

DSM Quality of Korean Satellite KOMPSAT-3 in Comparison to AW3D30 and Sentinel-1A in Respect of Airborne Laser Scanning

KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

With significant technological improvements on earth observation instruments, three dimensional space-borne remote sensing data became indispensable for modelling large areas and continents. To acquire high resolution 3D earth data, actual optical and synthetic aperture radar (SAR) satellite missions are launched frequently. Korean Multi-Purpose Satellite 3 (KOMPSAT-3), which was launched in May, 2012 by Korea Aerospace Research Institute (KARI), is a high-resolution optical observation mission. The 0.7 m ground sampling distance (GSD) and stereo imaging capability of the satellite enables to derive qualified digital surface models (DSM). We generated a 5 m spacing KOMPSAT-3 DSM in Istanbul historic peninsula and estimated its quality by comprehensively analysing the absolute and relative accuracies and the morphological detail description capability. In the analysis, 1 m spacing airborne laser scanning (ALS) DSM was used as reference. Additionally, the ALOS (Advanced Land Observation Satellite) World 3D 30 m (AW3D30) and Sentinel-1A (S-1A) DSMs have been used in comparison with the KOMPSAT-3 DSM. As accuracy metrics, standard deviation (SZ) and normalized median absolute deviation (NMAD) of height differences between KOMPSAT-3, AW3D30, S-1A and ALS reference DSM were used. The results demonstrated that KOMPSAT-3 DEM quality is better than AW3D30 and S-1A both in accuracy and morphologic detail analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alobeid, A., Jacobsen, K., and Heipke, C. (2009). “Building height estimation in urban areas from very high resolution satellite stereo images.” ISPRS Hannover Workshop, International Archives of Photogrammetry and Remote Sensing, Vol. 5, pp. 2–5.

    Google Scholar 

  • Bayburt, S., Kurtak, A. B., Büyüksalih, G., and Jacobsen, K. (2017). “Geometric accuracy analysis of WorldDEM in relation to AW3D30, SRTM and ASTER GDEM2.” ISPRS Hannover Workshop, International Archives of Photogrammetry and Remote Sensing, Vol. 42, pp. 211–215.

    Google Scholar 

  • Benarchid, O., Raissouni, N., El Adib, S., Abbous, A., Azyat, A., Achhab, N. B., Lahraoua, M., and Chahboun, A. (2013). “Building extraction using object-based classification and shadow information in very high resolution multispectral images, a case study: Tetuan, Morocco.” Canadian Journal on Image Processing and Computer Vision, Vol. 4, No. 1, pp. 1–8.

    Google Scholar 

  • Bhadauria A., Bhadauria H., and Kumar, A. (2013). “Building extraction from satellite images.” IOSR Journal of Computer Engineering, Vol. 12, No. 2, pp. 76–81, DOI: https://doi.org/10.9790/0661-1227681.

    Article  Google Scholar 

  • Büyüksalih, G., Bayburt, S., and Jacobsen, K. (2018). “Analysis of height models based on KOMPSAT-3 images.” Geolnformation for Disaster Management, International Archives of Photogrammetry and Remote Sensing, Vol. 42, pp. 115–119.

    Google Scholar 

  • De Zan, F. and Monti Guarnieri, A. (2006). “TOPSAR: Terrain observation by progressive scans.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, pp. 2352–2360, DOI: https://doi.org/10.1109/TGRS.2006.873853.

    Article  Google Scholar 

  • Ehrlich, D., Kemper, T., Blaes, X., and Soille, P. (2012). “Extracting building stock information from optical satellite imagery for mapping earthquake exposure and its vulnerability.” Natural Hazards, Vol. 68, pp. 79–95, DOI: https://doi.org/10.1007/s11069-012-0482-0.

    Article  Google Scholar 

  • Erdenebaatar, N., Kim, J., and Kim, T. (2017). “Analysis of geometric and spatial image quality of KOMPSAT-3A Imagery in comparison with KOMPSAT-3 imagery.” Korean Journal of Remote Sensing, Vol. 33, No. 1, pp. 1–13, DOI: https://doi.org/10.7780/kjrs.2017.33.1.1.

    Article  Google Scholar 

  • Font, M., Amorese, D., and Lagarde, J. L. (2010). “DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France).” Geomorphology, Vol. 119, Nos. 3–4, pp. 172–180, DOI: https://doi.org/10.1016/j.geomorph.2010.03.017.

    Article  Google Scholar 

  • Fraser, C. S. (2003). “Prospects for mapping from high-resolution satellite imagery.” Asian Journal of Geoinformatics, Vol. 4, No. 1, pp. 3–10.

    Google Scholar 

  • Jacobsen, K. (2003). “DEM generation from satellite data.” EARSeL Workshop, Ghent, Belgium, pp. 273–276.

    Google Scholar 

  • Jacobsen, K. (2007). “Comparison of image orientation by IKONOS, QuickBird and OrbView-3.” New Developments and Challenges in Remote Sensing, Z. Bochenek, Ed., Millpress, Rotterdam, Netherlands, pp. 667–676.

    Google Scholar 

  • Jain, M. K. and Singh, V. P. (2005). “DEM-based modelling of surface runoff using diffusion wave equation.” Journal of Hydrology, Vol. 302, Nos. 1–4, pp. 107–126, DOI: https://doi.org/10.1016/j.jhydrol.2004.06.042.

    Article  Google Scholar 

  • Jeong, J., Kim, J., and Kim, T. (2014). “Analysis ofgeolocation accuracy of KOMPSAT-3 imagery.” Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 37–45, DOI: https://doi.org/10.7780/kjrs.2014.30.1.4.

    Article  Google Scholar 

  • Jeong, J., Kim, J., Kim, T., and Rhee, S. (2016). “Evaluation of the performance of KOMPSAT-3 stereo images in terms of positioning and the generation of digital surface models.” Remote Sensing Letters, Vol. 7, No. 10, pp. 955–964. DOI: https://doi.org/10.1080/2150704X.2016.1201223.

    Article  Google Scholar 

  • Navalgund, R. R., Jayaraman, V., and Roy, P. S. (2007). “Remote sensing applications: An overview.” Current Science, Vol. 93, No. 12, pp. 1747–1766.

    Google Scholar 

  • Oh, J. H., Seo, D. C., and Lee, C. N. (2014). “A Study on DEM Generation from Kompsat-3 Stereo Images.” Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography, Vol. 32, No. 1, pp. 19–27, DOI: https://doi.org/10.7848/ksgpc.2014.32.1.19.

    Article  Google Scholar 

  • Schmidt, F. and Persson, A. (2003). “Comparison of DEM data capture and topographic wetness indices.” Precise Agriculture, Vol. 4, No. 2, pp. 179–192, DOI: https://doi.org/10.1023/A:1024509322709.

    Article  Google Scholar 

  • Sefercik, U. G and Atesoglu A. (2017). “Three-dimensional forest stand height map production utilizing airborne laser scanning dense point clouds and precise quality evaluation.” iForest — Biogeosciences and Forestry, Vol. 10, pp. 491–497, DOI: https://doi.org/10.3832/ifor2039-010.

    Article  Google Scholar 

  • Sefercik, U. G., Buyuksalih, G., Atalay, C., and Jacobsen, K. (2018). “Validation of Sentinel-1A and AW3D30 DSMs for the metropolitan area of Istanbul, Turkey.” Journal of Photogrammetry, Remote Sensing and Geoinformation Science, Vol. 86, Nos. 3–4, pp. 141–155, DOI: https://doi.org/10.1007/s41064-018-0054-3.

    Article  Google Scholar 

  • Sportouche, H., Tupin, F., and Denise, L. (2009). “Building extraction and 3D reconstruction in urban areas from high resolution optical and SAR imagery.” Proc., 2009 Joint Urban Remote Sensing Event, IEEE, Shanghai, China, pp. 1–11.

    Google Scholar 

  • Theng, L. B. (2006). “Automatic building extraction from satellite imagery.” Engineering Letters, Vol. 13, No. 3, pp. 255–259.

    Google Scholar 

  • Thompson, J. A., Bell, J. C., and Butler, C. A. (2001). “Digital elevation model resolution: Effects on terrain attribute calculation and quantitative soil-landscape modelling.” Geoderma, Vol. 100, Nos. 1–2, pp. 67–89, DOI: https://doi.org/10.1016/S0016-7061(00)00081-1.

    Article  Google Scholar 

  • Vassilopoulou, S., Hurni, L., Dietrich, V., Baltsavias, E., Pateraki, M., Lagios, E., and Parcharidis, I. (2002). “Orthophoto generation using IKONOS imagery and high resolution DEM: A case study on volcanic hazard monitoring of Nisyros island (Greece).” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, Nos. 1–2, pp. 24–38, DOI: https://doi.org/10.1016/S0924-2716(02)00126-0.

    Article  Google Scholar 

  • Yague-Martinez, N., Prats-Iraola, P., Rodrigue-Gonzalez, F., Brcic, R., Shau, R., Geudtner, D., Eineder, M., and Bamler, R. (2016). “Interferometric processing of Sentinel-1 TOPS data.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 4, pp. 2220–2234, DOI: https://doi.org/10.1109/TGRS.2015.2497902.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are going to ESA and JAXA for supporting Sentinel-1A and ALOS AW3D30 data as free of charge and we would like to thank Dr. Wilfred Linder for visualization software LISA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Gunes Sefercik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefercik, U.G., Buyuksalih, G., Jacobsen, K. et al. DSM Quality of Korean Satellite KOMPSAT-3 in Comparison to AW3D30 and Sentinel-1A in Respect of Airborne Laser Scanning. KSCE J Civ Eng 23, 3162–3173 (2019). https://doi.org/10.1007/s12205-019-2462-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-2462-3

Keywords

Navigation