Skip to main content
Log in

Ship Twin-propeller Jet Model used to Predict the Initial Velocity and Velocity Distribution within Diffusing Jet

  • Hydraulic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The current research proposed the theoretical model for ship twin-propeller jet based on the axial momentum theory and Gaussian normal distribution. The twin-propeller jet model is compared to the more matured single propeller jet model with good agreement. Computational Fluid Dynamics (CFD) method is used to acquire the velocity distribution within the twin-propeller jet for understanding of flow characteristics and validation purposes. Efflux velocity is the maximum velocity within the entire jet with strong influences by the geometrical profiles of the blades. Twin-propeller jet model showed four-peaked profile at the initial plane downstream to the propeller compared to the two-peaked profile from a single-propeller. The four-peaked profile merges to be twopeaked velocity profile and then one-peaked profile due to the fluid mixing. Entrainment occurs between the ambient still water outside and the rotating flow within jet due to the high velocity gradient. The research proposes a twin-propeller jet theory with a serial of equations enabling the predictions of velocity magnitude within the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H. (1950). “Diffusion of submerged jets.” American Society of Civil Engineers, vol. 115, no. 11, pp. 639–664.

    Google Scholar 

  • ANSYS Fluent (2013). ANSYS Fluent user’s guide 15.0, ANSYS Inc., Canonsburg, Pennsylvania, USA.

    Google Scholar 

  • ANSYS ICEM (2013). ANSYS ICEM CFD user’s manual 15.0. ANSYS Inc., Canonsburg, Pennsylvania, USA.

    Google Scholar 

  • Berger, W., Felkel, K., Hager, M., Oebius, H., and Schale, E. (1981). “Courant provoque parles bateaux protection des berges et solution pour eviter l’erosion du lit duhaut rhin.” Proceedings of 25th Congress P.I.A.N.C., Section 1-1.Edinburgh, Scotland.

    Google Scholar 

  • Blaauw, H. G. and van de Kaa, E. J. (1978). Erosion of bottom and sloping banks caused by the screw race of manoeuvring ships, Delft Hydraulics Laboratory, Delft, Netherlands, Publication No. 202, pp. 1–12.

    Google Scholar 

  • Fuehrer, M. and Romisch, K. (1977). “Effects of modern ship traffic on islands and ocean waterways and their structures.” Proceedings of 24th Congress P.I.A.N.C., Sections 1–3. Leningrad, Russia.

    Google Scholar 

  • Hamill, G. A. (1987). Characteristics of the screw wash of a manoeuvring ship and the resultant bed scour, PhD Thesis, Queen’s University of Belfast, UK.

    Google Scholar 

  • Hamill, G. A. and Kee, C. (2016). “Predicting axial velocity profiles within a diffusing marine propeller jet.” Ocean Engineering, vol. 124, pp. 104–112. DOI: 10.1016/j.oceaneng.2016.07.061.

    Article  Google Scholar 

  • Hamill, G. A., Kee, C., and Ryan, D. (2015). “3D efflux velocity characteristics of marine propeller jets.” Proceedings of the ICE-Maritime Engineering, vol. 168, no. 2, pp. 62–75. DOI: 10.1680/maen.14.00019.

    Article  Google Scholar 

  • Johnston, H. T., Hamill, G. A., Wilson, P. R., and Ryan, D. (2013). “Influence of a boundary on the development of a propeller wash.” Ocean Engineering, vol. 61, pp. 50–55. DOI: 10.1016/j.oceaneng.2012.12.033.

    Article  Google Scholar 

  • Lam, W. (2008). Simulations of a ship's propeller jet, PhD Thesis, Queen’s University of Belfast, UK.

    Google Scholar 

  • Lam, W., Hamill, G. A., and Robinson, D. J. (2013). “Initial wash profiles from a ship propeller using CFD method.” Ocean Engineering, vol. 72, pp. 257–266. DOI: 10.1016/j.oceaneng.2013.07.010.

    Article  Google Scholar 

  • Lam, W., Hamill, G. A., Robinson, D., Raghunathan, S., and Song, Y. (2012). “Analysis of the 3D zone of flow establishment from a ship propeller.” KSCE Journal of Civil Engineering, KSCE, vol. 16, no. 4, pp. 465–477. DOI: 10.1007/s12205-012-1256-7.

    Article  Google Scholar 

  • Lam, W., Hamill, G. A., Song, Y. C., Robinson, D. J., and Raghunathan, S. (2011). “Experimental investigation of the decay from a ship's propeller.” China Ocean Engineering, vol. 25, no. 2, pp. 265–284. DOI: 10.1007/s13344-011-0050-5.

    Article  Google Scholar 

  • Lee, J. H. W. and Chu, V. H. (2003). Turbulent jets and plumes: A Lagrangian approach, Kluwer Academic, Netherlands, DOI: 10.1007/978-1-4615-0407-8.

    Book  Google Scholar 

  • Mujal-Colilles, A., Gironella, X., Crespo, A. J. C., and Sanchez-Arcilla, A. (2017). “Study of the bed velocity induced by twin propellers.” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 143, No. 5, 04017013-8. DOI: 10.1061/(ASCE)WW.1943-5460.0000382.

    Google Scholar 

  • Prosser, M. (1986). “Propeller induced scour.” Tech. Rep., BHRA Project RP A01415, The Fluid Engineering Centre, Cranfield, England.

    Google Scholar 

  • Solidworks (2016). Solidworks tutorials 2016, Dassault Systèmes Solidworks Corporation, Concord, Massachusettss, USA.

    Google Scholar 

  • Stewart, D. P. J. (1992). Characteristics of a ship's screw wash and the influence of quay wall proximity, PhD Thesis, Queen’s University of Belfast, UK.

    Google Scholar 

  • Verhey, H. J. (1983). “The stability of bottom and banks subjected to velocities in the propeller jet behind ships.” 8th International Harbour Congness, Antwerp, Belgium.

    Google Scholar 

  • Versteegs, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics the finite volume method, Second Edition, Prentice Hall, Essex, England.

    Google Scholar 

  • Wang, H. and Law, A. W. K. (2002). “Second-order integral model for a round turbulent buoyant jet.” Journal of Fluid Mechanics, vol. 459, pp. 397–428. DOI: 10.1017/S0022112002008157.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Haur Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Lam, WH., Cui, Y. et al. Ship Twin-propeller Jet Model used to Predict the Initial Velocity and Velocity Distribution within Diffusing Jet. KSCE J Civ Eng 23, 1118–1131 (2019). https://doi.org/10.1007/s12205-019-1370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-1370-x

Keywords

Navigation