Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 5, pp 2281–2292 | Cite as

Mechanical Performance of Stiffened Concrete Filled Double Skin Steel Tubular Stub Columns under Axial Compression

  • Hussein Ghanim HasanEmail author
  • Talha Ekmekyapar
Structural Engineering
  • 61 Downloads

Abstract

This paper presents the mechanical performance of Concrete Filled Double Skin Steel Tube (CFDST) columns stiffened by Welded Reinforcing Bars (WRBs) under axial compression. A series of experiments were carried out on sixteen CFDST columns using two different D/t ratios and different patterns of WRBs as parameters. The steel reinforcing bars were welded either on the external surface of the inner tubes or on the internal surface of the outer tubes. Various patterns were used to enable a better understanding of the stiffened CFDST columns performance. Moreover, the compressive loading vs. end shortening curves, failure modes, strength index and concrete-steel contribution ratio were analysed. The results showed that a certain pattern of the WRBs affords additional ductility and strength capacity of the stiffened CFDST columns. Furthermore, WRBs play an important role in the mitigating failure modes and work consistently with the shell concrete of these columns. Design methods were developed for the calculation of the strength capacity of stiffened CFDST columns and assessed against the experimental results to trace the suitable formulation for design purposes. The outcomes of modified analytical procedures mostly match well with the experimental results of the stiffened CFDST columns.

Keywords

CFDST columns welded reinforcing bars failure modes experiments design methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, H., Al-Salloum, Y., Alsayed, S., Alhaddad, M., and Iqbal, R. (2017). “Post-heating response of concrete-filled circular steel columns.” KSCE Journal of Civil Engineering, Vol. 21, No. 4, pp. 1367–1378, DOI:10.1007/s12205-016-0852-3.CrossRefGoogle Scholar
  2. AISC (2016). Specification for structural steel buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, IL, USA.Google Scholar
  3. Aslani, F., Uy, B., Hur, J., and Carino, P. (2017). “Behaviour and design of hollow and concrete-filled spiral welded steel tube columns subjected to axial compression.” Journal of Constructional Steel Research, Vol. 128, pp. 261–288, DOI:  https://doi.org/10.1016/j.jcsr.2016.08.023.CrossRefGoogle Scholar
  4. Aslani, F., Uy, B., Tao, Z., and Mashiri, F. (2015a). “Behaviour and design of composite columns incorporating compact high-strength steel plates.” Journal of Constructional Steel Research, Vol. 107, pp. 94–110, DOI:  https://doi.org/10.1016/j.jcsr.2015.01.005.CrossRefGoogle Scholar
  5. Aslani, F., Uy, B., Tao, Z., and Mashiri, F. (2015b). “Predicting the axial load capacity of high-strength concrete filled steel tubular columns.” Steel and Composite Structures, Vol. 19, No. 4, pp. 967–993, DOI:  https://doi.org/10.12989/scs.2015.19.4.967.CrossRefGoogle Scholar
  6. Aslani, F., Uy, B., Wang, Z., and Patel, V. (2016). “Confinement models for high strength short square and rectangular concrete-filled steel tubular columns.” Steel and Composite Structures, Vol. 22, No. 5, pp. 937–974, DOI:  https://doi.org/10.12989/scs.2016.22.5.937.CrossRefGoogle Scholar
  7. ASTM (2003). Standard test method for compressive strength of cylindrical concrete specimens, C39/C39M-03, ASTM International, West Conshohocken, PA, USA, DOI:  https://doi.org/10.1520/C0039_C0039M-03.Google Scholar
  8. ASTM (2015a). Standard specification for deformed and plain carbon-steel bars for concrete reinforcement, A615/A615M, ASTM International, West Conshohocken, PA, USA, DOI:  https://doi.org/10.1520/A0615_A0615M-18E01.Google Scholar
  9. ASTM (2015b). Standard test methods for tension testing of metallic materials-standard, E8/E8M-16a, ASTM International, West Conshohocken, PA, USA, DOI:  https://doi.org/10.1520/E0008_E0008M-16A.Google Scholar
  10. CEN (2004). Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, BS EN 1994-1-1:2004, European Committee for Standardization, Brussel, Belgium.Google Scholar
  11. CEN (2006). Cold formed welded structural hollow sections of nonalloy and fine grain steels - Part 1: Technical delivery conditions, BS EN 10219-1:2006, European Committee for Standardization, Brussel, Belgium.Google Scholar
  12. Dabaon, M., El-Khoriby, S., El-Boghdadi, M., and Hassanein, M. F. (2009). “Confinement effect of stiffened and unstiffened concretefilled stainless steel tubular stub columns.” Journal of Constructional Steel Research, Vol. 65, Nos. 8–9, pp. 1846–1854, DOI:  https://doi.org/10.1016/j.jcsr.2009.04.012.CrossRefGoogle Scholar
  13. Dong, C. and Ho, J. C. M. (2013). “Improving interface bonding of double-skinned CFST columns.” Magazine of Concrete Research, Vol. 65, No. 20, pp. 1199–1211, DOI:  https://doi.org/10.1680/macr.13.00041.CrossRefGoogle Scholar
  14. Ekmekyapar, T., Alwan, O. H., Hasan, H. G., Shehab, B. A., and ALEliwi, B. J. (2019). “Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations.” Journal of Constructional Steel Research, Vol. 155, pp. 192–204, DOI:  https://doi.org/10.1016/j.jcsr.2018.12.025.CrossRefGoogle Scholar
  15. Elchalakani, M., Hassanein, M., Karrech, A., and Yang, B. (2018). “Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression.” Engineering Structures, Vol. 171, pp. 730–746, DOI:  https://doi.org/10.1016/j.engstruct.2018.05.123.CrossRefGoogle Scholar
  16. Elchalakani, M., Zhao, X.-L., and Grzebieta, R. (2002). “Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression.” Thin-Walled Structures, Vol. 40, No. 5, pp. 415–441, DOI:  https://doi.org/10.1016/S0263-8231(02)00009-5.CrossRefGoogle Scholar
  17. Essopjee, Y. and Dundu, M. (2015). “Performance of concrete-filled double-skin circular tubes in compression.” Composite Structures, Vol. 133, pp. 1276–1283, DOI:  https://doi.org/10.1016/j.compstruct.2015.08.033.CrossRefGoogle Scholar
  18. Fu, Z., Wang, Q., Wang, Y., and Ji, B. (2018). “Bending performance of lightweight aggregate concrete-filled steel tube composite beam.” KSCE Journal of Civil Engineering, Vol. 22, No. 9, pp. 1–9, DOI:  https://doi.org/10.1007/s12205-018-0660-z.Google Scholar
  19. Ge, H. and Usami, T. (1992). “Strength of concrete-filled thin-walled steel box columns: Experiment.” Journal of Structural Engineering, Vol. 118, No. 11, pp. 3036–3054, DOI:  https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036).CrossRefGoogle Scholar
  20. Gopal, S. R. (2017). “An experimental study on FRC infilled steel tubular columns under eccentric loading.” KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 923–927, DOI:  https://doi.org/10.1007/s12205-016-0851-4.CrossRefGoogle Scholar
  21. Han, L.-H., Huang, H., and Zhao, X.-L. (2009). “Analytical behaviour of Concrete-filled Double Skin Steel Tubular (CFDST) beamcolumns under cyclic loading.” Thin-Walled Structures, Vol. 47, No. 6, pp. 668–680, DOI:  https://doi.org/10.1016/j.tws.2008.11.008.CrossRefGoogle Scholar
  22. Han, L.-H., Li, W., and Bjorhovde, R. (2014). “Developments and advanced applications of Concrete-filled Steel Tubular (CFST) structures: Members.” Journal of Constructional Steel Research, Vol. 100, pp. 211–228, DOI:  https://doi.org/10.1016/j.jcsr.2014.04.016.CrossRefGoogle Scholar
  23. Hassan, M. M., Mahmoud, A. A., and Serror, M. H. (2016). “Behavior of concrete-filled double skin steel tube beam-columns.” Steel and Composite Structures, Vol. 22, No. 5, pp. 1141–1162, DOI:  https://doi.org/10.12989/scs.2016.22.5.1141.CrossRefGoogle Scholar
  24. Hassanein, M. and Kharoob, O. (2014). “Compressive strength of circular concrete-filled double skin tubular short columns.” Thin- Walled Structures, Vol. 77, pp. 165–173, DOI:  https://doi.org/10.1016/j.tws.2013.10.004.CrossRefGoogle Scholar
  25. Hui, L., Bo, W., and Li—yan, L. (1998). “Study on seismic properties of laminated column with high strength concrete containing steel tube.” Earthquake Engineer ing and Engineering Vibration, Vol. 18, No. 1, pp. 45–52.Google Scholar
  26. Ibañez, C., Romero, M. L., Espinos, A., Portolés, J., and Albero, V. (2017). “Ultra-high strength concrete on eccentrically loaded slender circular concrete-filled dual steel columns.” Structures, Vol. 12, pp. 64–74, DOI:  https://doi.org/10.1016/j.istruc.2017.07.005.CrossRefGoogle Scholar
  27. Kim, D.-W. and Shim, C.-S. (2016). “Experiments on flexural strength on composite modular bridge pier cap for CFT columns.” KSCE Journal of Civil Engineering, Vol. 20, No. 6, pp. 2483–2491, DOI:  https://doi.org/10.1007/s12205-015-1467-9.CrossRefGoogle Scholar
  28. Kwan, A., Dong, C., and Ho, J. (2016). “Axial and lateral stress–strain model for circular concrete-filled steel tubes with external steel confinement.” Engineering Structures, Vol. 117, pp. 528–541, DOI:  https://doi.org/10.1016/j.engstruct.2016.03.026.CrossRefGoogle Scholar
  29. Lai, M. and Ho, J. (2014). “Confinement effect of ring-confined concretefilled- steel-tube columns under uni-axial load.” Engineering Structures, Vol. 67, pp. 123–141, DOI:  https://doi.org/10.1016/j.engstruct.2014.02.013.CrossRefGoogle Scholar
  30. Lee, S.-H., Choi, Y.-H., Kim, Y.-H., and Choi, S.-M. (2012). “Structural performance of welded built-up square CFST stub columns.” Thin- Walled Structures, Vol. 52, pp. 12–20, DOI:  https://doi.org/10.1016/j.tws.2011.09.003.CrossRefGoogle Scholar
  31. Lin, T., Huang, C., and Chen, S. (1993). “Concrete-filled tubular steel columns subjected to eccentric axial load.” J. Chin. Inst. Civil Hydraulic Eng, Vol. 54, pp. 377–386.Google Scholar
  32. Pagoulatou, M., Sheehan, T., Dai, X., and Lam, D. (2014). “Finite element analysis on the capacity of circular Concrete-filled Doubleskin Steel Tubular (CFDST) stub columns.” Engineering Structures, Vol. 72, pp. 102–112, DOI:  https://doi.org/10.1016/j.engstruct.2014.04.039.CrossRefGoogle Scholar
  33. Park, T., Hwang, W.-S., Leon, R. T., and Hu, J. W. (2011). “Damage evaluation of composite-special moment frames with concrete-filled tube columns under strong seismic loads.” KSCE Journal of Civil Engineering, Vol. 15, No. 8, pp. 1381–1394, DOI:  https://doi.org/10.1007/s12205-011-1225-6.CrossRefGoogle Scholar
  34. Romero, M. L., Ibañez, C., Espinós, A., Portolés, J., and Hospitaler, A. (2017). “Influence of ultra-high strength concrete on circular concretefilled dual steel columns.” Structures, Vol. 9, pp. 13–20, DOI:  https://doi.org/10.1016/j.istruc.2016.07.001.CrossRefGoogle Scholar
  35. Ronald, Z. D. (2010). Guide to stability design criteria for metal structures, Sixth Edition, John Wiley and Sons, Inc., Canada.Google Scholar
  36. Shekastehband, B., Taromi, A., and Abedi, K. (2017). “Fire performance of stiffened concrete filled double skin steel tubular columns.” Fire Safety Journal, Vol. 88, pp. 13–25, DOI:  https://doi.org/10.1016/j.firesaf.2016.12.009.CrossRefGoogle Scholar
  37. Sulthana, U. and Jayachandran, S. (2017). “Axial compression behaviour of long concrete filled double skinned steel tubular columns.” Structures, Vol. 9, pp. 157–164, DOI:  https://doi.org/10.1016/j.istruc.2016.12.002.CrossRefGoogle Scholar
  38. Tao, Z., Han, L.-H., and Wang, Z.-B. (2005). “Experimental behaviour of stiffened concrete-filled thin-walled Hollow Steel Structural (HSS) stub columns.” Journal of Constructional Steel Research, Vol. 61, No. 7, pp. 962–983, DOI:  https://doi.org/10.1016/j.jcsr.2004.12.003.CrossRefGoogle Scholar
  39. Tao, Z., Han, L. H., and Wang, D. Y. (2007). “Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns.” Thin- Walled Structures, Vol. 45, No. 5, pp. 517–527, DOI:  https://doi.org/10.1016/j.tws.2007.04.003.CrossRefGoogle Scholar
  40. Tao, Z., Han, L.-H., and Wang, D.-Y. (2008). “Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete.” Thin-Walled Structures, Vol. 46, No. 10, pp. 1113–1128, DOI:  https://doi.org/10.1016/j.tws.2008.01.007.CrossRefGoogle Scholar
  41. Tao, Z., Uy, B., Han, L.-H., and Wang, Z.-B. (2009). “Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression.” Thin-Walled Structures, Vol. 47, No. 12, pp. 1544–1556, DOI:  https://doi.org/10.1016/j.tws.2009.05.006.CrossRefGoogle Scholar
  42. Wang, Z.-B., Tao, Z., and Yu, Q. (2017). “Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners.” Thin- Walled Structures, Vol. 120, pp. 91–104, DOI:  https://doi.org/10.1016/j.tws.2017.08.025.CrossRefGoogle Scholar
  43. Wei, S., Mau, S., Vipulanandan, C., and Mantrala, S. (1995). “Performance of new sandwich tube under axial loading: Analysis.” Journal of Structural Engineering, Vol. 121, No. 12, pp. 1815–1821, DOI:  https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1815).CrossRefGoogle Scholar
  44. Yang, Z., Li, G., Lang, Y., and Fang, C. (2017). “Flexural behavior of high strength concrete filled square steel tube with inner CFRP circular tube.” KSCE Journal of Civil Engineering, Vol. 21, No. 7, pp. 2728–2737, DOI:  https://doi.org/10.1007/s12205-017-0579-9.CrossRefGoogle Scholar
  45. Yu, M., Zha, X., Ye, J., and Li, Y. (2013). “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression.” Engineering Structures, Vol. 49, pp. 1–10, DOI:  https://doi.org/10.1016/j.engstruct.2012.10.018.CrossRefGoogle Scholar
  46. Zhang, Y., Huang, Y., Lei, K., Pei, J., and Zhang, Q. (2017). “Seismic behaviors of steel bar reinforced joints of concrete filled steel tubular laminated columns.” KSCE Journal of Civil Engineering, Vol. 22, No. 9, pp. 1–13, DOI:  https://doi.org/10.1007/s12205-017-0685-8.Google Scholar
  47. Zhao, X.-L. and Grzebieta, R. (2002). “Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes.” Thin-Walled Structures, Vol. 40, No. 2, pp. 199–213, DOI:  https://doi.org/10.1016/S0263-8231(01)00060-X.CrossRefGoogle Scholar
  48. Zhu, A., Zhang, X., Zhu, H., Zhu, J., and Lu, Y. (2017). “Experimental study of concrete filled cold-formed steel tubular stub columns.” Journal of Constructional Steel Research, Vol. 134, pp. 17–27, DOI:  https://doi.org/10.1016/j.jcsr.2017.03.003.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Dept. of Civil EngineeringUniversity of GaziantepGaziantepTurkey

Personalised recommendations